Telegram Group & Telegram Channel
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, Soham De
Статья: https://arxiv.org/abs/2303.06349

Продолжаем про RNN. У нас было про LEM (https://www.group-telegram.com/es/gonzo_ML.com/857), было про state space models и в частности про S4 (https://www.group-telegram.com/es/gonzo_ML.com/1424), было про RWKV (https://www.group-telegram.com/es/gonzo_ML.com/1647). Ещё из сравнительно недавних работ было исследование от DeepMind. Это своего рода возврат к классике.

С RNN долгое время была проблема, что они быстры на инференс, но медленно обучаются в смысле плохо параллелятся, и их сложно обучать на длинных последовательностях. Со свежими state space models (SSM) это в целом уже не так, они и на инференс так же хороши, и обучение их параллелится, и очень длинные последовательности могут обрабатывать. Но они хоть и эквивалентны RNN в режиме инференса, в режиме обучения у них есть важные отличия типа дискретизации непрерывной системы и очень специальной инициализации, про которые, кажется, ещё не до конца ясно, какова механика работы этой кухни.

В текущей работе авторы задаются вопросом, можно ли достичь перформанса глубоких SSM традиционными глубокими RNN (причём ванильными, а не LSTM)? И отвечают, что можно. Достигают этого серией маленьких шагов, и полученную модель называют Linear Recurrent Unit (LRU).

Основные шаги таковы:

0. Vanilla RNN. Пляшем от базовой рекуррентности:

𝑥_𝑘 = 𝜎(𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘)
𝑦_𝑘 = 𝐶𝑥_𝑘 + 𝐷𝑢_𝑘

где
(𝑢_1, 𝑢_2, . . . , 𝑢_𝐿) -- входы размерности 𝐻_in,
(𝑦_1, 𝑦_2, . . . , 𝑦_𝐿) -- выходы размерности 𝐻_out,
𝑥_𝑘 -- скрытое состояние размерности N в момент времени k,
A,B,C,D -- матрицы с обучаемыми параметрами

1. Linear Recurrences. Если SSM слои заменить на vanilla RNN, то нелинейности типа tanh или ReLU в рекуррентности приводят к сильной просадке качества. Зато если нелинейности убрать и оставить линейные рекуррентности, то всё существенно улучшается. Рекуррентная формула превращается в

𝑥_𝑘 = 𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘.

Это интересный результат, идущий вразрез с массовым пониманием важности нелинейностей. Возможно, это также одна из причин успеха глубоких SSM, где рекуррентность тоже линейная.

Сложные нелинейные отображения при этом можно моделировать соединением линейных RNN слоёв и нелинейных MLP (в этом смысле паттерн аналогичен последовательности слоёв MHSA+MLP в трансформере). В приложении есть отдельный большой интересный раздел вокруг этого.

“any sufficiently regular nonlinear autonomous dynamical system can be made linear under a high-dimensional nonlinear blow-up of the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN can do“

2. Complex Diagonal Recurrent Matrices. Линейную рекуррентность уже можно развернуть в легко параллелизуемую сумму. Далее dense linear RNN слои могут быть репараметризованы в комплексную диагональную форму, где матрица A заменяется на:

𝐴 = 𝑃Λ𝑃^{−1},
𝑃 ∈ ℂ^{𝑁×𝑁},
Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ ℂ^{𝑁×𝑁}

Комплексные числа нужны для диагонализации несимметричных матриц. Это не ухудшает выразительность, а диагональность позволяет ещё ускорить хорошо параллелизуемые вычисления.

Проверялись на Long Range Arena (LRA). На sCIFAR диагональная линейная RNN обучалась в 8 раз быстрее обычной с ReLU, и сравнялась по скорости с авторской имплементацией S4D (диагональный вариант S4, https://arxiv.org/abs/2203.14343) и S5 (упрощённый вариант S4, https://arxiv.org/abs/2208.04933). Интересно, что это также повышает и качество на некоторых задачах типа sCIFAR и ListOps. Но кое-где понижает стабильность.

3. Stable Exponential Parameterization. Диагональная матрица репараметризуется как:

Λ = diag(exp(−𝜈 + 𝑖𝜃)), где 𝜈 ∈ ℝ^𝑁 и 𝜃 ∈ ℝ^𝑁 обучаемые параметры взамен действительной и мнимой частей Λ.

Это разъединяет магнитуду и частоту осцилляций и делает работу оптимизатора легче, что уже повышает перформанс.

Также в такой формулировке просто заэнфорсить стабильность собственных значений через нелинейность типа экспоненциальной для каждого из значений j:



group-telegram.com/gonzo_ML/1734
Create:
Last Update:

Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, Soham De
Статья: https://arxiv.org/abs/2303.06349

Продолжаем про RNN. У нас было про LEM (https://www.group-telegram.com/es/gonzo_ML.com/857), было про state space models и в частности про S4 (https://www.group-telegram.com/es/gonzo_ML.com/1424), было про RWKV (https://www.group-telegram.com/es/gonzo_ML.com/1647). Ещё из сравнительно недавних работ было исследование от DeepMind. Это своего рода возврат к классике.

С RNN долгое время была проблема, что они быстры на инференс, но медленно обучаются в смысле плохо параллелятся, и их сложно обучать на длинных последовательностях. Со свежими state space models (SSM) это в целом уже не так, они и на инференс так же хороши, и обучение их параллелится, и очень длинные последовательности могут обрабатывать. Но они хоть и эквивалентны RNN в режиме инференса, в режиме обучения у них есть важные отличия типа дискретизации непрерывной системы и очень специальной инициализации, про которые, кажется, ещё не до конца ясно, какова механика работы этой кухни.

В текущей работе авторы задаются вопросом, можно ли достичь перформанса глубоких SSM традиционными глубокими RNN (причём ванильными, а не LSTM)? И отвечают, что можно. Достигают этого серией маленьких шагов, и полученную модель называют Linear Recurrent Unit (LRU).

Основные шаги таковы:

0. Vanilla RNN. Пляшем от базовой рекуррентности:

𝑥_𝑘 = 𝜎(𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘)
𝑦_𝑘 = 𝐶𝑥_𝑘 + 𝐷𝑢_𝑘

где
(𝑢_1, 𝑢_2, . . . , 𝑢_𝐿) -- входы размерности 𝐻_in,
(𝑦_1, 𝑦_2, . . . , 𝑦_𝐿) -- выходы размерности 𝐻_out,
𝑥_𝑘 -- скрытое состояние размерности N в момент времени k,
A,B,C,D -- матрицы с обучаемыми параметрами

1. Linear Recurrences. Если SSM слои заменить на vanilla RNN, то нелинейности типа tanh или ReLU в рекуррентности приводят к сильной просадке качества. Зато если нелинейности убрать и оставить линейные рекуррентности, то всё существенно улучшается. Рекуррентная формула превращается в

𝑥_𝑘 = 𝐴𝑥_{𝑘−1} + 𝐵𝑢_𝑘.

Это интересный результат, идущий вразрез с массовым пониманием важности нелинейностей. Возможно, это также одна из причин успеха глубоких SSM, где рекуррентность тоже линейная.

Сложные нелинейные отображения при этом можно моделировать соединением линейных RNN слоёв и нелинейных MLP (в этом смысле паттерн аналогичен последовательности слоёв MHSA+MLP в трансформере). В приложении есть отдельный большой интересный раздел вокруг этого.

“any sufficiently regular nonlinear autonomous dynamical system can be made linear under a high-dimensional nonlinear blow-up of the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN can do“

2. Complex Diagonal Recurrent Matrices. Линейную рекуррентность уже можно развернуть в легко параллелизуемую сумму. Далее dense linear RNN слои могут быть репараметризованы в комплексную диагональную форму, где матрица A заменяется на:

𝐴 = 𝑃Λ𝑃^{−1},
𝑃 ∈ ℂ^{𝑁×𝑁},
Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ ℂ^{𝑁×𝑁}

Комплексные числа нужны для диагонализации несимметричных матриц. Это не ухудшает выразительность, а диагональность позволяет ещё ускорить хорошо параллелизуемые вычисления.

Проверялись на Long Range Arena (LRA). На sCIFAR диагональная линейная RNN обучалась в 8 раз быстрее обычной с ReLU, и сравнялась по скорости с авторской имплементацией S4D (диагональный вариант S4, https://arxiv.org/abs/2203.14343) и S5 (упрощённый вариант S4, https://arxiv.org/abs/2208.04933). Интересно, что это также повышает и качество на некоторых задачах типа sCIFAR и ListOps. Но кое-где понижает стабильность.

3. Stable Exponential Parameterization. Диагональная матрица репараметризуется как:

Λ = diag(exp(−𝜈 + 𝑖𝜃)), где 𝜈 ∈ ℝ^𝑁 и 𝜃 ∈ ℝ^𝑁 обучаемые параметры взамен действительной и мнимой частей Λ.

Это разъединяет магнитуду и частоту осцилляций и делает работу оптимизатора легче, что уже повышает перформанс.

Также в такой формулировке просто заэнфорсить стабильность собственных значений через нелинейность типа экспоненциальной для каждого из значений j:

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/1734

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from es


Telegram gonzo-обзоры ML статей
FROM American