Telegram Group & Telegram Channel
Linformer: Self-Attention with Linear Complexity
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma
Статья: https://arxiv.org/abs/2006.04768

Хочется написать про свежий Performer, но пожалуй стоит перед ним написать про Linformer.

Это всё из серии про уменьшить квадратичную сложность полного механизма внимания в трансформере. Линформер, очевидно по названию, уменьшает сложность до линейной и по времени и по месту. За последние полгода таких работ уже несколько, недавний Big Bird (https://www.group-telegram.com/es/gonzo_ML.com/381) из свежего, или чуть более ранняя работа с многообещающим названием “Transformers are RNNs” (https://arxiv.org/abs/2006.16236).

Разберём Linformer.

Идея в общем проста — заменим полную матрицу внимания на низкоранговую аппроксимацию. Авторы исходят из наблюдения, что self-attention низкоранговый. Для этого они анализируют спектр матрицы и утверждают, что особенно в верхних слоях, больше информации сконцентрировано в наибольших сингулярных значениях. И грубо говоря, считаем SVD для матрицы внимания и оставляем только k сингулярных значений (например, 128).

SVD только дорого считать на каждый чих, поэтому делаем проще, вводим две линейные проекции для K и V (Q не трогаем) перед расчётом внимания, так что в итоге считать придётся меньше. Оригинальные размерности n*d матрицы ключей и значений конвертятся в k*d и дальше внимание уже скейлится линейно, получается матрица внимания n*k вместо n*n.

Для пущей оптимизации эти матрицы проекций (E и F) можно ещё и пошарить между головами или слоями.

В экспериментах получают для k=128 качество как у трансформера с n=512, а для k=256 сравнимо с n=1024. И шаринг тоже работает, даже если шарить матрицы на все слои (то есть вообще одна матрица E на всю сеть).

Ну в общем работает вроде как, качество норм. Получают качество сравнимое с BERT’ом или RoBERTa, но при в 4 раза меньшем k. Плюс всё получается быстрее и памяти жрёт меньше.



group-telegram.com/gonzo_ML/397
Create:
Last Update:

Linformer: Self-Attention with Linear Complexity
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma
Статья: https://arxiv.org/abs/2006.04768

Хочется написать про свежий Performer, но пожалуй стоит перед ним написать про Linformer.

Это всё из серии про уменьшить квадратичную сложность полного механизма внимания в трансформере. Линформер, очевидно по названию, уменьшает сложность до линейной и по времени и по месту. За последние полгода таких работ уже несколько, недавний Big Bird (https://www.group-telegram.com/es/gonzo_ML.com/381) из свежего, или чуть более ранняя работа с многообещающим названием “Transformers are RNNs” (https://arxiv.org/abs/2006.16236).

Разберём Linformer.

Идея в общем проста — заменим полную матрицу внимания на низкоранговую аппроксимацию. Авторы исходят из наблюдения, что self-attention низкоранговый. Для этого они анализируют спектр матрицы и утверждают, что особенно в верхних слоях, больше информации сконцентрировано в наибольших сингулярных значениях. И грубо говоря, считаем SVD для матрицы внимания и оставляем только k сингулярных значений (например, 128).

SVD только дорого считать на каждый чих, поэтому делаем проще, вводим две линейные проекции для K и V (Q не трогаем) перед расчётом внимания, так что в итоге считать придётся меньше. Оригинальные размерности n*d матрицы ключей и значений конвертятся в k*d и дальше внимание уже скейлится линейно, получается матрица внимания n*k вместо n*n.

Для пущей оптимизации эти матрицы проекций (E и F) можно ещё и пошарить между головами или слоями.

В экспериментах получают для k=128 качество как у трансформера с n=512, а для k=256 сравнимо с n=1024. И шаринг тоже работает, даже если шарить матрицы на все слои (то есть вообще одна матрица E на всю сеть).

Ну в общем работает вроде как, качество норм. Получают качество сравнимое с BERT’ом или RoBERTa, но при в 4 раза меньшем k. Плюс всё получается быстрее и памяти жрёт меньше.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/397

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted.
from es


Telegram gonzo-обзоры ML статей
FROM American