Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/62 -
Telegram Group & Telegram Channel
3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.



group-telegram.com/gonzo_ML/62
Create:
Last Update:

3. Сложные модификации Трансформера -- борьба с ограничениями.

Базовых ограничений у Трансформера несколько:
* не может быть контекста длиннее длины входа
* тяжело увеличивать длину входа (attention это квадрат от входа по сложности)
* не Turing Complete
Соответственно, последние полгода народ активно работает над снятием этих ограничений. Тут мне попались такие штуки:

3.1. Universal Transformers, Google, написан в прошлом году, попал на ICLR2019
Статья: https://arxiv.org/abs/1807.03819
Блогопост: https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html
Свежий разбор: http://mostafadehghani.com/2019/05/05/universal-transformers/

Мотивация -- трасформеры не Turing Complete и у трасформеров нет Recurrent Inductive Bias, а оно, говорят, очень полезно для генерализации структуры.
Давайте сделаем реккурентную сеть поверх трансформерной ячейки.

Ячейка -- один энкодерный слой из трансформера, на каждом такте она обрабатывает все входы и выдаёт самой себе выход на следующий шаг.
При этом надо как-то понять когда остановиться -- делаем вычисляемый признак остановки -- отдельный для каждой позиции входа.
Такая конструкция называется Adaptive universal transformer (идея adaptive остновки взята из аналогичных более старых работ про RNN).
Если для какой-то позиции случалась остановка -- стейт этой позиции замораживаем и копируем дальше на входы внимания другим словам на более поздних итерациях.

Утверждается, что UT существенно более эффективен, чем обычный Трансформер на задачах, где мало входных данных.

3.2. Transformer-XL, начало 2019, Google Brain + CMU
Статья: https://arxiv.org/abs/1901.02860
Разбор: https://towardsdatascience.com/transformer-xl-explained-combining-transformers-and-rnns-into-a-state-of-the-art-language-model-c0cfe9e5a924

Боремся с проблемой фиксированной длины входа. Transformer-XL это модификация LM over vanilla Transformer, позволяющая откусить больше, чем в рот помещается. Полезная для понимания схема -- ниже.
Логика простая:
* Пусть у нас есть допустимый вход длины Х. И входное предложение длины Y>X.
* Порежем входное предложение на куски длины Х.
* Первый кусок пропустим как обычно, но будем сохранять промежуточные стейты.
* Дальше будем обрабатывать следующий кусок, плюс подавать на вход ещё и стейты с предыдущего куска (и запоминать новые).
Такая схема позволяет, сохраняя историю стейтов равную высоте стэка, имитировать длинное окно входа. Это не совсем честно, т.к. градиент на прошлый кусок уже не уйдёт, но всё равно не так плохо. Есть ещё одна загвоздка -- в оригинальном Трансформере у нас есть абсолютное позиционное кодирование. Здесь вместо него предлагается использовать относительное: при расчёте внимания со слова в позиции А на слово в позиции В считать вес внимания отдельно по совпадению Query/Key (без позиционного сигнала) + часть веса добавлять как функицю от разности (В-А). И такую конструкцию, в отличие от оригинального Трансформера, следует делать на каждом слое сети.

Показано, что такой подход даёт SOTA на задачах, где нужно держать длинный контекст.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/62

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change.
from es


Telegram gonzo-обзоры ML статей
FROM American