Telegram Group & Telegram Channel
Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)



group-telegram.com/olympgeom/1573
Create:
Last Update:

Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)

BY Олимпиадная геометрия


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/olympgeom/1573

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. NEWS These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis."
from es


Telegram Олимпиадная геометрия
FROM American