Notice: file_put_contents(): Write of 12185 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 16281 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Kali Novskaya | Telegram Webview: rybolos_channel/1309 -
Telegram Group & Telegram Channel
🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1309
Create:
Last Update:

🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look.
from es


Telegram Kali Novskaya
FROM American