Telegram Group & Telegram Channel
#nlp #про_nlp #ai_alignment #длиннопост

🌸Какие ценности у языковых моделей?🌸

Часть 2. Базовые модели, SFT — продолжение

🟣BLOOM — самая большая мультиязычная языковая модель в опен-сорсе. Обучалась на готовом корпусе OSCAR, плюс еще несколько источников — которые вместе прошли дедупликацию и автоматическую чистку от спама + персональных данных. Все вместе назвали новым названием — ROOTS Corpus.
Проведено сравнение с другими языковыми моделями (наконец-то!) по критериям "непредвзятость" (Fairness) и "смещенность" (Bias) из бенчмарка HELM. В среавнении с другими языковыми моделями, BLOOM показывает себя хорошо — лучше только результаты Anthropic, InstructGPT, OPT.
Статья
🟣LaMDa — закрытая языковая модель от Google, виновница новостей о "сознании" нейросетей. В рамках автмоатичсекой оценки качества и общей цели создания модели введена метрика качества SSI — sensibleness, specificity, and interestingness. То есть цель ответов модели — быть разумными, конкретными и интересными.
Отдельно большое внимание уделено безопасности — полная разметка диалогов по более чем 50 категориям возможных нежелательных тематик, плюс привдеена статистика по сбалансированности социодемфакторов самих разметчиков. Метрики по фактологичности и безопасности у модели вышли высокими (около 80%), а вот "интересность" пока проседает в районе 20-30%
Минус: в работе отсутствуют замеры на классических датасетах и бенчмарках (ну конечно, зачем, когда ввели новую метрику и на ней померились)
В работе приводится крайне интересный вывод: (а) масштабирование модели само по себе улучшает качество, но его улучшения в плане безопасности и обоснованности намного отстают от возможностей человека, и (б) сочетание масштабирования и дообучения с помощью качественных данных по SSI значительно улучшает прирост качества по всем показателям безопасности и фактологичности.
Статья

🟣OPT — языковая модель от Мета с масштабом до 175 млрд параметров. Модель оценивается на детекции хейтспича, а также уже известном нам датасете стереотипов CrowS-Pairs и StereoSet (добавляет категорию профессии). авторы приводят честное сравнение: модель показывает себя хуже по почти всем показателям, чем GPT-3, но лучше, чем первая версия BlenderBot.
Статья

🟣BlenderBot 3 — языковая модель с дообучением на диалогах диалоговых задачах. Модель улучшает качество за счет дообучения на специфичных датасетах, для нетоксичности — SaFeRDialogues. Сверху работает классификатор токсичных сообщений, обученный на Википедии (да, если вы не знали, это отличный источник токсичных обсжудений), который не пропускает небезопасные ответы модели.
Оценку на классических датасетах в основном проводили в сравнении с OPT, на собственном датасете: BB лучше справляется на категории возраста, политики, экономики, внешности, но хуже, чем OPT, показывает себя на культурных биасах, половой ориентации.
Своим же классификатором токсичности авторы оценили другие модели на тех же затравках. Тогда как у BlenderBot 6% токсичности, у некоторых вариаций OPT до 70% срабатываний. Подловили!
Статья

Краткий итог:
— пока что общего замера моделей на этических тестах, тестах на безопасность нет.
— все измеряются на разных датасетах, и к тому же, сложно не отметить, что по уму все сделано только у проприетарных моделей, которым более релевантно доказывать свою безопасность — Anthropic, LaMDa, OPT
— у опенсорсных Pythia, CerebrasGPT, OpenLLaMa метрики так себе, а у GPT-J, StableLM даже нет замеров.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/673
Create:
Last Update:

#nlp #про_nlp #ai_alignment #длиннопост

🌸Какие ценности у языковых моделей?🌸

Часть 2. Базовые модели, SFT — продолжение

🟣BLOOM — самая большая мультиязычная языковая модель в опен-сорсе. Обучалась на готовом корпусе OSCAR, плюс еще несколько источников — которые вместе прошли дедупликацию и автоматическую чистку от спама + персональных данных. Все вместе назвали новым названием — ROOTS Corpus.
Проведено сравнение с другими языковыми моделями (наконец-то!) по критериям "непредвзятость" (Fairness) и "смещенность" (Bias) из бенчмарка HELM. В среавнении с другими языковыми моделями, BLOOM показывает себя хорошо — лучше только результаты Anthropic, InstructGPT, OPT.
Статья
🟣LaMDa — закрытая языковая модель от Google, виновница новостей о "сознании" нейросетей. В рамках автмоатичсекой оценки качества и общей цели создания модели введена метрика качества SSI — sensibleness, specificity, and interestingness. То есть цель ответов модели — быть разумными, конкретными и интересными.
Отдельно большое внимание уделено безопасности — полная разметка диалогов по более чем 50 категориям возможных нежелательных тематик, плюс привдеена статистика по сбалансированности социодемфакторов самих разметчиков. Метрики по фактологичности и безопасности у модели вышли высокими (около 80%), а вот "интересность" пока проседает в районе 20-30%
Минус: в работе отсутствуют замеры на классических датасетах и бенчмарках (ну конечно, зачем, когда ввели новую метрику и на ней померились)
В работе приводится крайне интересный вывод: (а) масштабирование модели само по себе улучшает качество, но его улучшения в плане безопасности и обоснованности намного отстают от возможностей человека, и (б) сочетание масштабирования и дообучения с помощью качественных данных по SSI значительно улучшает прирост качества по всем показателям безопасности и фактологичности.
Статья

🟣OPT — языковая модель от Мета с масштабом до 175 млрд параметров. Модель оценивается на детекции хейтспича, а также уже известном нам датасете стереотипов CrowS-Pairs и StereoSet (добавляет категорию профессии). авторы приводят честное сравнение: модель показывает себя хуже по почти всем показателям, чем GPT-3, но лучше, чем первая версия BlenderBot.
Статья

🟣BlenderBot 3 — языковая модель с дообучением на диалогах диалоговых задачах. Модель улучшает качество за счет дообучения на специфичных датасетах, для нетоксичности — SaFeRDialogues. Сверху работает классификатор токсичных сообщений, обученный на Википедии (да, если вы не знали, это отличный источник токсичных обсжудений), который не пропускает небезопасные ответы модели.
Оценку на классических датасетах в основном проводили в сравнении с OPT, на собственном датасете: BB лучше справляется на категории возраста, политики, экономики, внешности, но хуже, чем OPT, показывает себя на культурных биасах, половой ориентации.
Своим же классификатором токсичности авторы оценили другие модели на тех же затравках. Тогда как у BlenderBot 6% токсичности, у некоторых вариаций OPT до 70% срабатываний. Подловили!
Статья

Краткий итог:
— пока что общего замера моделей на этических тестах, тестах на безопасность нет.
— все измеряются на разных датасетах, и к тому же, сложно не отметить, что по уму все сделано только у проприетарных моделей, которым более релевантно доказывать свою безопасность — Anthropic, LaMDa, OPT
— у опенсорсных Pythia, CerebrasGPT, OpenLLaMa метрики так себе, а у GPT-J, StableLM даже нет замеров.

BY Kali Novskaya


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/rybolos_channel/673

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from es


Telegram Kali Novskaya
FROM American