Telegram Group & Telegram Channel
Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями



group-telegram.com/sweet_homotopy/2040
Create:
Last Update:

Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2040

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from es


Telegram сладко стянул
FROM American