Telegram Group & Telegram Channel
Forwarded from Электросвязь
〰️ В первой части статьи Березкина А.А., Ченского А.А., Киричека Р.В., Захарова А.А. «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть I. Методика» (№ 9 2024 журнала «Электросвязь») были обобщены результаты исследований сжатия и квантования латентных пространств признаков вариационных автокодировщиков, представлены модификация нейросетевого кодека, наборы данных и методика экспериментов.

🛠 Во второй части статьи «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть II. Эксперимент» авторами исследованы различные конфигурации нейросетевых кодеков, разработанных на основе вариационных автокодировщиков вида VQ и KL (VQ-f4, VQ-f8, VQ-f16, KL-f4, KL-f8, KL-f16, KL-f32) из состава моделей Stable Diffusion на предмет возможности их использования для сжатия кадров видеопотока при FPV-управлении беспилотными системами.
Обобщаются исследования, проведённые для автокодировщика VQ-f16.

Рассматривается адаптация алгоритмов квантования и сжатия для латентного пространства признаков вариационных автокодировщиков видов VQ и KL, проводится оценка соотношений степеней сжатия и метрик качества восстанавливаемого изображения для вариационных автокодировщиков при различных конфигурациях нейросетевого кодека, определяются наилучшие методы обработки латентного пространства для каждого вариационного автокодировщика, а также проводится оценка целесообразности использования каждого из них.

⚡️ Разработаны предварительные конфигурации нейросетевого кодека для использования в различных условиях.

Как было выявлено авторами статьи, вариационные автокодировщики видов VQ и KL обладают различными параметрами Гауссова распределения латентного пространства признаков, что влияет на эффективность совместного использования различных алгоритмов сжатия и квантования. В статье показано, какие алгоритмы сжатия и квантования эффективнее использовать с различными моделями.

🔖 Полный текст статьи Березкина А.А., Ченского А.А., Киричека Р.В., Захарова А.А. «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть II. Эксперимент» опубликован в №10 2024 журнала «Электросвязь».
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/uav_tech/30156
Create:
Last Update:

〰️ В первой части статьи Березкина А.А., Ченского А.А., Киричека Р.В., Захарова А.А. «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть I. Методика» (№ 9 2024 журнала «Электросвязь») были обобщены результаты исследований сжатия и квантования латентных пространств признаков вариационных автокодировщиков, представлены модификация нейросетевого кодека, наборы данных и методика экспериментов.

🛠 Во второй части статьи «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть II. Эксперимент» авторами исследованы различные конфигурации нейросетевых кодеков, разработанных на основе вариационных автокодировщиков вида VQ и KL (VQ-f4, VQ-f8, VQ-f16, KL-f4, KL-f8, KL-f16, KL-f32) из состава моделей Stable Diffusion на предмет возможности их использования для сжатия кадров видеопотока при FPV-управлении беспилотными системами.
Обобщаются исследования, проведённые для автокодировщика VQ-f16.

Рассматривается адаптация алгоритмов квантования и сжатия для латентного пространства признаков вариационных автокодировщиков видов VQ и KL, проводится оценка соотношений степеней сжатия и метрик качества восстанавливаемого изображения для вариационных автокодировщиков при различных конфигурациях нейросетевого кодека, определяются наилучшие методы обработки латентного пространства для каждого вариационного автокодировщика, а также проводится оценка целесообразности использования каждого из них.

⚡️ Разработаны предварительные конфигурации нейросетевого кодека для использования в различных условиях.

Как было выявлено авторами статьи, вариационные автокодировщики видов VQ и KL обладают различными параметрами Гауссова распределения латентного пространства признаков, что влияет на эффективность совместного использования различных алгоритмов сжатия и квантования. В статье показано, какие алгоритмы сжатия и квантования эффективнее использовать с различными моделями.

🔖 Полный текст статьи Березкина А.А., Ченского А.А., Киричека Р.В., Захарова А.А. «Исследование конфигураций нейросетевых кодеков для адаптивной системы сжатия кадров FPV-видеопотока при управлении беспилотными системами. Часть II. Эксперимент» опубликован в №10 2024 журнала «Электросвязь».

BY Беспилотники (дроны, БПЛА, UAV)




Share with your friend now:
group-telegram.com/uav_tech/30156

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from es


Telegram Беспилотники (дроны, БПЛА, UAV)
FROM American