Telegram Group & Telegram Channel
LLAMA

Когда вы занимаетесь перформансом, одно из полезных упражнений для проделывания в голове -- анализ скорости света. В простом варианте надо задать себе вопрос "А какой реально лимит сделать то, что делаем мы в библиотеке/программе?".

Очевидный ответ, понятное дело, ноль, лимита нет. Но если подумать, всегда есть некоторые ограничения. Приведём примеры:

Компрессия -- лимит: memcpy. Скопировать данные уж точно надо будет

Хеширование -- проход по массиву, уж точно надо будет все данные прогрузить и сделать хотя бы одну инструкцию с ними

Аллокатор -- хмм, уже не очень понятно

Анализы скорости света выходят всё чаще и чаще, например, теоретические лимиты в математике/алгоритмах и так далее. Они часто оказываются неприменимы, но они действительно могут помочь понять, куда смотреть, находить какие-то эвристики для того, чтобы приблизиться к этому лимиту.

Тут вышла статья с технологией LLAMA (нет, не моделькой от фейсбука и название поста специально привлекает ваше внимание, потому что хайповые вещи я обсуждаю очень редко). А именно Learned Lifetime-Aware Memory Allocator.

https://dl.acm.org/doi/pdf/10.1145/3654642#page=89

Одна из проблем при аллокациях памяти -- локальность, некоторые объекты живут долго, некоторые очень мало, это создает очень большие проблемы с упаковкой памяти и фрагментацией.

Статья рассказывает, что если брать полный стектрейс аллокации и запоминать сколько объект поживёт, то с помощью LLM можно предсказывать сколько объект будет жить, и получить намного лучшую упаковку на реальных программах. К сожалению, запуск даже простых LLM и стектрейсов занимает микросекунды, когда TCMalloc возвращает память почти всегда за наносекунды.

Почему стектрейсы?

Потому что адреса вызовов могут меняться от запуска к запуску из-за рандомизации адресов бинаря. И потому что если вы вызываете аллокацию вектора, которую вызываете из ещё какого-то фреймворка, то становится уже очень сложно понять, какие адреса важны -- на самом деле важны все входы и поэтому полный стектрейс важен.

Что делать с перфом?

Ничего, это будет медленнее, но авторы обмазались кешами и всяким таким, потеряв немного качества и переобучаясь, если качество со временем падает заметно.

Из интересного, да, перформанс аллокатора замедлился раза в 3-4, но перформанс всей программы замедлился всего на 12%. Если посчитать, сколько занимает аллокатор, то в целом получается, что решения аллокатора ускоряют всё остальное. Поэтому не надо бояться проводить немного больше в аллокаторе -- его решения влияют на последующие результаты.

Что в итоге?

В статье очень красивые графики, которые показывают как фрагментация уменьшилась, но выводов особо нет. Это достаточно красивый метод как предсказывать и показывать, а где, собственно, лимит и что любые движения в том, чтобы попытаться такой подход заиспользовать.

В целом авторам удалось заметить некоторые эвристики, которые пошли в прод. Без деталей, но если надо, я найду для следующих постов, там долгая история:

We applied insights from this work to Temeraire, in order to make better decisions about when to break up huge pages in this allocator, which led to an estimated 1% throughput improvement across Google’s fleet


В общем, в этом достаточно интересный урок -- не бойтесь делать анализы скоростей света, когда можно потратить больше времени, чтобы найти лучше конфигурацию. Такие эксперименты дают больше понимания, что в идеальной ситуации должно работать.



group-telegram.com/experimentalchill/272
Create:
Last Update:

LLAMA

Когда вы занимаетесь перформансом, одно из полезных упражнений для проделывания в голове -- анализ скорости света. В простом варианте надо задать себе вопрос "А какой реально лимит сделать то, что делаем мы в библиотеке/программе?".

Очевидный ответ, понятное дело, ноль, лимита нет. Но если подумать, всегда есть некоторые ограничения. Приведём примеры:

Компрессия -- лимит: memcpy. Скопировать данные уж точно надо будет

Хеширование -- проход по массиву, уж точно надо будет все данные прогрузить и сделать хотя бы одну инструкцию с ними

Аллокатор -- хмм, уже не очень понятно

Анализы скорости света выходят всё чаще и чаще, например, теоретические лимиты в математике/алгоритмах и так далее. Они часто оказываются неприменимы, но они действительно могут помочь понять, куда смотреть, находить какие-то эвристики для того, чтобы приблизиться к этому лимиту.

Тут вышла статья с технологией LLAMA (нет, не моделькой от фейсбука и название поста специально привлекает ваше внимание, потому что хайповые вещи я обсуждаю очень редко). А именно Learned Lifetime-Aware Memory Allocator.

https://dl.acm.org/doi/pdf/10.1145/3654642#page=89

Одна из проблем при аллокациях памяти -- локальность, некоторые объекты живут долго, некоторые очень мало, это создает очень большие проблемы с упаковкой памяти и фрагментацией.

Статья рассказывает, что если брать полный стектрейс аллокации и запоминать сколько объект поживёт, то с помощью LLM можно предсказывать сколько объект будет жить, и получить намного лучшую упаковку на реальных программах. К сожалению, запуск даже простых LLM и стектрейсов занимает микросекунды, когда TCMalloc возвращает память почти всегда за наносекунды.

Почему стектрейсы?

Потому что адреса вызовов могут меняться от запуска к запуску из-за рандомизации адресов бинаря. И потому что если вы вызываете аллокацию вектора, которую вызываете из ещё какого-то фреймворка, то становится уже очень сложно понять, какие адреса важны -- на самом деле важны все входы и поэтому полный стектрейс важен.

Что делать с перфом?

Ничего, это будет медленнее, но авторы обмазались кешами и всяким таким, потеряв немного качества и переобучаясь, если качество со временем падает заметно.

Из интересного, да, перформанс аллокатора замедлился раза в 3-4, но перформанс всей программы замедлился всего на 12%. Если посчитать, сколько занимает аллокатор, то в целом получается, что решения аллокатора ускоряют всё остальное. Поэтому не надо бояться проводить немного больше в аллокаторе -- его решения влияют на последующие результаты.

Что в итоге?

В статье очень красивые графики, которые показывают как фрагментация уменьшилась, но выводов особо нет. Это достаточно красивый метод как предсказывать и показывать, а где, собственно, лимит и что любые движения в том, чтобы попытаться такой подход заиспользовать.

В целом авторам удалось заметить некоторые эвристики, которые пошли в прод. Без деталей, но если надо, я найду для следующих постов, там долгая история:

We applied insights from this work to Temeraire, in order to make better decisions about when to break up huge pages in this allocator, which led to an estimated 1% throughput improvement across Google’s fleet


В общем, в этом достаточно интересный урок -- не бойтесь делать анализы скоростей света, когда можно потратить больше времени, чтобы найти лучше конфигурацию. Такие эксперименты дают больше понимания, что в идеальной ситуации должно работать.

BY Experimental chill

❌Photos not found?❌Click here to update cache.


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/experimentalchill/272

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Despite Telegram's origins, its approach to users' security has privacy advocates worried. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from us


Telegram Experimental chill
FROM American