Telegram Group & Telegram Channel
Forwarded from Zanis ISE
📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف



group-telegram.com/NeuroZanis/245
Create:
Last Update:

📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف

BY NeuroZanis


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/NeuroZanis/245

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns
from fr


Telegram NeuroZanis
FROM American