Notice: file_put_contents(): Write of 5989 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14181 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
АДовый рисёрч | Telegram Webview: ad_research/297 -
Telegram Group & Telegram Channel
#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/297
Create:
Last Update:

#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/297

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. False news often spreads via public groups, or chats, with potentially fatal effects. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from fr


Telegram АДовый рисёрч
FROM American