Telegram Group Search
Сугубо техническое. К вопросу про автодокументирование и применение LLM. Я в качестве теста решил обновить инструмент undatum [1] переделав команду analyze для анализа структуры разных видов дата файлов: csv, jsonl, parquet и xml и добавив поддержку не таких машиночитаемых xls, xlsx и даже таблиц из docx файлов.

Но главное было автоматизировать документирование датасетов. Утилита теперь принимает опцию —autodoc при которой список колонок таблиц передаётся в AI Perplexity и полученные описания используются для генерации описания к полям. Соответственно, можно задавать разные языки и получать детальное описание колонки на нужном языке.

Это, конечно, не всё что нужно для автодокументирования датасетов, но некая существенная часть.

И да, в некоем преобразованном виде оно используется в Dateno [2] и есть ещё много других областей применения.

Пока код в основной ветке undatum и для работы надо также обновить библиотеку pyiterable [3] и пока нет отдельного релиза в виде пакета для Python, но потестировать уже можно.

Для работы надо ввести ключ для API Perplexity в переменную окружения PERPLEXITY_API_KEY и вызвать команду
undatum analyze —autodoc —language <язык> <название дата файла>

Дата файл может быть сжатым, например, somedata.csv.gz или somedata.jsonl.zst

Ссылки:
[1] https://github.com/datacoon/undatum
[2] https://dateno.io
[3] https://github.com/apicrafter/pyiterable

#opensource #datatools #data
В рубрике больших интересных наборов данных Global Ensemble Digital Terrain Model 30m (GEDTM30) [1] глобальная цифровая модель рельефа (DTM) в виде двух GeoTIFF файлов оптимизированных для облачной работы (cloud GeoTIFF) общим объёмом чуть менее 39 гигабайт.

Этот набор данных охватывает весь мир и может использоваться для таких приложений, как анализ топографии, гидрологии и геоморфометрии.

Создание набора данных профинансировано Европейским союзом в рамках проекта киберинфраструктуры Open-Earth-Monitor [2].

А также доступен код проекта [3] и пример визуализации в QGIS.

Доступно под лицензией CC-BY 4.0

Ссылки:
[1] https://zenodo.org/records/14900181
[2] https://cordis.europa.eu/project/id/101059548

#opendata #geodata #datasets
Интересная свежая статья в Journal of Democracy под названием Delivering Democracy. Why Results matter? [1], на русском языке она прозвучала была с двояким смыслом "Доставляя демократию. Почему результаты имеют значение?". Доставляя как: гуманитарными или военными самолётами? Но здесь речь о классическом понимании provide (предоставлять). Среди авторов статьи Френсис Фукуяма что ещё одна причина её почитать.

Если коротко, то основная идея в том что Демократия не может быть основана только на идеалах. Граждане хотят результатов: работы, безопасности, услуг. Мысль не то чтобы новая, но предельно коротко и точно изложенная именно в этой статье и то что ситуации когда в демократических странах идут долгие экономические кризисы то возникают и кризисы восприятия демократии и наоборот и есть бесспорные экономические успехи в авторитарных странах.

Я, также, ранее не встречал термина performance legitimacy, он есть в предыдущей статье Бена Кросса, Performance Legitimacy for Realists [2] одного из соавторов. Это термин применяемый к восточно-азиатским странам и его можно описать так

Легитимность на основе эффективности (или performance legitimacy) — это концепция, согласно которой власть обосновывает своё право на управление через успешное выполнение задач, направленных на улучшение жизни граждан, а не через традиционные или демократические источники легитимности. Этот подход основывается на достижении положительных материальных результатов, таких как экономический рост, снижение уровня бедности и повышение качества жизни населения.

И, кстати, он применим не только к восточно-азиатским странам, многие авторитарные страны в мире идут тем же путём. И это не худшая форма авторитаризма, конечно,.

Ключевое в статье - это акцент на том как перезапустить демократии чтобы они тоже могли доставлять не хуже авторитарных режимов и, честно говоря, ответов там мало. Я увидел один базовый тезис - лучше управляйте экономикой и его расширение эффективнее развивайте инфраструктуру.

Всё это, конечно, к технологической инфраструктуре и цифровым сервисам имеет прямое отношение. У демократических государств гораздо больше барьеров в их реализации. Авторитаризм имеющие большие экономические ресурсы может быть весьма эффективен. Как демократиям научиться доставлять в этой области - вот в чём вопрос.

Ссылки:
[1] https://muse.jhu.edu/pub/1/article/954557
[2] https://muse.jhu.edu/pub/5/article/918473

#opengov #data tech #thoughts #democracy #digitalservices
Тем временем в рубрике новых свежих открытых данных из России, но не о России, датасеты Сведений о динамике рыночных котировок цифровых валют и Сведения об иностранных организаторах торгов цифровых валют на веб странице на сайте ФНС России посвящённой Майнингу цифровой валюты [1]. Данные представлены в виде таблиц на странице, с возможностью экспорта в Excel и получению в формате JSON из недокументированного API.

Данные любопытные хотя и у коммерческих провайдеров их, несомненно, побольше будет и по разнообразнее.

Условия использования не указаны, исходим из того что это Public Domain.

Мы обязательно добавим их в каталог CryptoData Hub [2] вскоре.

Ссылки:
[1] https://www.nalog.gov.ru/mining/
[2] https://cryptodata.center

#opendata #russia #cryptocurrencies #crypto #datasets
Кстати, вот такой вопрос. А какие есть хорошие инструменты и, желательно, кейсы открытых или недорогих инструментов для совместной работы аналитиков? Причём желательно для тех кто умеет Excel и не умеет SQL.

Есть JupyterLab, но он про тех кто умеет в Python и всё что касается больших данных там, всё равно, про SQL. То же самое с RStudio и RStudio совсем не про совместную работу.

И, не на облачных платформах, а так чтобы можно было развернуть локально.
Примерно с такими требованиями:
1. Подключением к наиболее популярным базам данных: PostgreSQL, Clickhouse,
2. Совместные пространства для работы от 2 до 10 человек
3. Возможность получения данных интерактивными запросами и SQL
4. Возможность экспорта данных в Excel
5. Возможность сохранять и делиться результатами внутри пространств: файлы, таблицы, дашборды (желательно)
6. Гибкое управление доступом к пространствам и ресурсам: публичные и закрытые пространства.
7. Желательно с поддержкой Jupyter Notebooks.

Что-то из этого могут инструменты вроде Yandex Datalens (есть open source версия) и SuperSet, но так чтобы всё это вместе - такого не знаю.

Поделитесь личным опытом.

#questions #dataanalytics
Обнаружил ещё один инструмент по проверке данных validator [1], умеет делать кросс табличные проверки данных и использует схему из спецификации Frictionless Data [2]. Пока малоизвестный, но кто знает. Он выглядит неплохо по способу реализации, но есть проблема с самой спецификацией и о ней отдельно.

Я неоднократно писал про Frictionless Data, это спецификация и набор инструментов созданных в Open Knowledge Foundation для описания и публикации наборов данных. Спецификация много лет развивалась, вокруг неё появился пул инструментов, например, свежий Open Data Editor [3] помогающий готовить датасеты для публикации на дата платформах на базе ПО CKAN.

С этой спецификацией есть лишь одна, но серьёзная проблема. Она полноценно охватывает только плоские табличные файлы. Так чтобы работать со схемой данных, использовать их SDK, тот же Open Data Editor и тд. Это даёт ей применение для некоторых видов данных с которыми работают аналитики и куда хуже с задачами дата инженерными.

Существенная часть рабочих данных с которыми я сталкивался - это не табличные данные. К примеру, в плоские таблицы плохо ложатся данные о госконтрактах или юридических лицах или объектах музейных коллекций. Там естественнее применения JSON и, соответственно, построчного NDJSON.

Для таких данных куда лучше подходят пакеты валидации данных вроде Cerberus [4]. Я использовал её в случае с реестром дата каталогов [5] в Dateno и пока не видел решений лучше.

Ссылки:
[1] https://github.com/ezwelty/validator/
[2] https://specs.frictionlessdata.io
[3] https://opendataeditor.okfn.org
[4] https://docs.python-cerberus.org/
[5] https://github.com/commondataio/dataportals-registry/

#opensource #data #datatools #dataquality
В задачах качества данных есть такое явление как Data quality reports. Не так часто встречается как хотелось бы и, в основном, для тех проектов где данные существуют как продукт (data-as-a-product) потому что клиенты интересуются.

Публичных таких отчётов немного, но вот любопытный и открытый - Global LEI Data Quality Reports [1] от создателей глобальной базы идентификаторов компаний LEI. Полезно было бы такое для многих крупных открытых датасетов, но редко встречается.

Ссылки:
[1] https://www.gleif.org/en/lei-data/gleif-data-quality-management/quality-reports

#opendata #datasets #dataquality
В рубрике как это устроено у них о том как управляют публикацией открытых данных во Франции. Частью французского национального портала открытых данных является schema.data.gouv.fr [1] на котором представлено 73 схемы с описанием структурированных данных. Эти схемы охватывают самые разные области и тематики:
- схема данных о государственных закупках
- схема данных о грантах
- схема данных архивных реестров записей
и ещё много других.

Всего по этим схемам на портале data.gouv.fr опубликовано 3246 наборов данных, чуть более 5% от всего что там размещено.

Особенность портала со схемами в том что все они опубликованы как отдельные репозитории на Github созданными из одного шаблона. А сами схемы представлены, либо по стандарту Frictionless Data - тот самый формат про таблицы о котором я писал и он тут называется TableSchema, либо в формате JSONSchema когда данные не табличные. В общем-то звучит как правильное сочетания применения этих подходов.

А для простоты публикации данных по этим схемам у был создан сервис Validata [2] в котором загружаемые данные можно проверить на соответствие этой схеме.

Ссылки:
[1] https://schema.data.gouv.fr
[2] https://validata.fr/

#opendata #datasets #data #datatools #france
Я лично не пишу научных статей, потому что или работа с данными, или писать тексты. Но немало статей я читаю, почти всегда по очень узким темам и пользуюсь для этого, в основном, Semantic Scholar и подобными инструментами. Смотрю сейчас Ai2 Paper Finder [1] от института Аллена и они в недавнем его анонсе [2] пообещали что он умеет находить очень релевантные ответы по по очень узким темам. Собственно вот пример запроса по узкой интересной мне теме и он нашёл по ней 49 работ.

Вот это очень интересный результат, в списке интересных мне инструментов прибавилось однозначно.

Там же в анонсе у них есть ссылки на схожие продукты в этой области и на бенчмарки LitSearch [3] и Pasa [4] для измерения качества поиска по научным работам работам.

Ссылки:
[1] https://paperfinder.allen.ai/
[2] https://allenai.org/blog/paper-finder
[3] https://github.com/princeton-nlp/LitSearch
[4] https://github.com/bytedance/pasa

#ai #openaccess #opensource #science
И о научных работах которые я искал, собственно более всего меня интересовали свежие статьи о автодокументировании наборов данных и вот наиболее релевантная работа AutoDDG: Automated Dataset Description Generation using Large Language Models [1] которую я проглядел несмотря на то что у меня в Semantic Scholar настроены фильтры с уведомлением о статьях по определенным темам. Кстати, хорошо бы если бы эти фильтры могли иметь форму запросов к AI помощнику, результаты должны быть точнее.

А статья интересная, от команды Visualization, Imaging, and Data Analysis Center at New York University (VIDA-NYU) которые делали очень много разных инструментов по автоматизации анализа данных и, кстати, они авторы одного из поисковиков по открытым данным Auctus [2], только они забросили этот проект года 3 назад, но он был интересен.

Вот эта команда вместе со статьёй выложили код AutoDDG [3] который пока явно мало кто видел. Можно код посмотреть и увидеть что они там делали примерно то что и я в утилите undatum [4], но с лучшей проработкой. Вернее у меня проработка была практическая и моя утилита умеет датасеты в разных форматах документировать, но у них, несомненно, качество документирования проработаннее и продуманнее.

Хорошая статья, полезный код. Прилинковывать его к своим проектам я бы не стал, но идеи подсмотреть там можно. Заодно они применяют ИИ для выявления семантических типов данных, приятно что кто-то думает в том же направлении что и я;)

Ссылки:
[1] https://www.semanticscholar.org/reader/5298f09eced7aa2010f650ff16e4736e6d8dc8fe
[2] https://github.com/VIDA-NYU/auctus
[3] https://github.com/VIDA-NYU/AutoDDG
[4] https://www.group-telegram.com/begtin.com/6578

#opensource #datadocumentation #ai #aitools
В продолжение влияния тарифов на технологические компании, полезная заметка Trade, Tariffs, and Tech [1] от Бена Томпсона. Там много интересных рассуждений о параллелях между текущей ситуацией и Никсоновским шоком [2] в виде приостановки Бреттон-Вудских соглашений. Но это макроэкономика и это интересно, но, важнее практический исход.

Собственно из технологических компаний, похоже, более всего может пострадать Apple из-за высокой зависимости от производство в Китае и, в принципе, за пределами США, но безболезненный перенос его в США маловероятен. Далее он пишет про высокую вероятность снижения доходов всех рекламных BigTech'ов поскольку меньше дешёвых товаров=меньше массовых рекламных контрактов и, наконец, с меньшей вероятностью это затронет Microsoft с их бизнесом по продаже софта кроме разве что увеличения стоимости строительства дата центров.

Ссылки:
[1] https://stratechery.com/2025/trade-tariffs-and-tech/
[2] https://ru.wikipedia.org/wiki/%D0%9D%D0%B8%D0%BA%D1%81%D0%BE%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D1%88%D0%BE%D0%BA

#tech #tariffs #readings
Очень любопытный подход к созданию каталогов данных для распространения тяжёлых датасетов бесплатно 0$ Data Distribution [1]. Если вкратце то автор воспользовался сервисом Clouflare R2 в опции Egress и используя DuckDB и таблицы Iceberg, распространяя файлы в формате Parquet.

DuckDB там можно заменить на PyIceberg или Snowflake, главное возможность бесплатно подключить и захостить данные. У автора хорошее демо [2] с тем как это работает, ограничения только в том что надо вначале, достаточно быстро и автоматически получить ключ доступа к каталогу, но это как раз не проблема.

Это, с одной стороны, выглядит как чистый лайфхак ибо Cloudflare может изменить ценовую политику, а с другой очень даже полезная модель применения.

И сама работа с таблицами используя Apache Iceberg [3]. Если вы ещё не читали об этом подходе и инструменте, то стоит уделить время. Это тот случай когда каталог данных существует в дата инженерном контексте, а то есть по автоматизации работы с данными, но без СУБД. Однако поверх Iceberg можно построить свои системы управления данными, как открытые так и не очень. Это одна из фундаментальных технологий в том смысле что из неё и других как конструктор можно собрать свой дата продукт.

Ссылки:
[1] https://juhache.substack.com/p/0-data-distribution
[2] https://catalog.boringdata.io/dashboard/
[3] https://iceberg.apache.org/

#opensource #datacatalogs #dataengineering #analytics
Docker теперь умеет запускать ИИ модели [1], похоже что пока только на Mac с Apple Silicon, но обещают скоро и на Windows с GPU ускорением.

Пора обновлять ноутбуки и десктопы.😜

Ссылки:
[1] https://www.docker.com/blog/introducing-docker-model-runner/

#ai #docker #llm
Про Apache Iceberg как всё более нарастающий технологический тренд в дата инженерии, ещё в декабре 2024 года Amazon добавили его поддержку в S3, а сейчас появляется всё больше число инструментов поддерживающих подключение к Apache Iceberg.

Даже удивительно как технология которой уже более 8 лет может стремительно набрать популярность при достижении определённого уровня зрелости и появлении эффективных инструментов.

Что важно знать про Apache Iceberg:
1. Это стандарт и ПО для построения озер данных созданный для преодоления ограничений предыдущих продуктов со схожими функциями такими как Apache Hudi
2. В основе Apache Iceberg технологии хранения на базе S3 и файлы Parquet. Parquet используется как контейнеры хранения данных, а S3 как хранилище данных и метаданных
3. Фундаментальная идея в реализации недорого хранилища для аналитических данных с высокопроизводительным доступом через SQL.
4. Важная причина роста популярности в комбинации: производительности, снижения стоимости и большой экосистемы из движком для запросов (query engines)
5. Серверных продуктов с открытым кодом для Apache Iceberg пока немного, кроме самой референсной реализации есть Nessie и Lakekeeper. Но много облачных провайдеров которые поддерживают такие таблицы.
6. Большая часть примеров сейчас про облачные S3 хранилища, в основном AWS. Для подключения S3 совместимых хранилищ требуется повозится
7. Применять Apache Iceberg оправдано когда у вас есть команда аналитиков умеющих в SQL и совсем неоправдано для не умеющих
8. К задачам связанным с открытыми данными этот тип дата каталога малоприменим потому что он про удобное рабочее место для продвинутого аналитика, а не про дистрибуцию данных.
9. Вообще такие продукты - это про разницу между каталогами данных, каталогами метаданных, каталогами открытых данных. Названия выглядят так словно отличий мало, а отличия огромны. Как и области применения.

#opensource #dataengineering #dataanalytics #iceberg
Полезные ссылки про данные, технологии и не только:
- Cloudflare R2 data catalog [1] свежий каталог данных на базе Apache Iceberg от Cloudflare поверх их сервиса хранения файлов R2. Хорошая новость, потому что R2 дешевле Amazon S3 при сравнимом качестве сервиса. Жду когда Backblaze запустит аналогичный сервис для их Backblaze B2
- xorq [2] читается как zork, фреймворк для обработки данных с помощью разных движков. Там и DuckDB, и Pandas, и DataFusion и др. Удобство в универсальности, но продукт пока малоизвестный, надо смотреть
- Iceberg?? Give it a REST! [3] автор рассуждает о том что без REST каталога Iceberg малополезен и, в принципе, про развитие этой экосистемы. Многие уже рассматривают стремительный взлёт Iceberg как хайп, что не отменяет того что технология весьма любопытная.
- BI is dead. Change my mind. [4] текст от Engeneering director в Clickhouse о том как меняется (может поменяться) BI в ближайшее время. TLDR: LLM + MCP + LibreChat. Чтение полезное для всех кто занимается внутренней аналитикой и использует Clickhouse
- Roadmap: Data 3.0 in the Lakehouse Era [5] изменения в экосистеме управления данными с точки зрения венчурного капитала. Простым языком для тех кто инвестирует средства в то какие новые технологии в дата инженерии появились и развиваются.

Ссылки:
[1] https://blog.cloudflare.com/r2-data-catalog-public-beta/
[2] https://github.com/xorq-labs/xorq
[3] https://roundup.getdbt.com/p/iceberg-give-it-a-rest
[4] https://www.linkedin.com/pulse/bi-dead-change-my-mind-dmitry-pavlov-2otae/
[5] https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

#opensource #dataanalytics #datatools #dataengineering
По поводу каталогов данных на базы Apache Iceberg, я не поленился и развернул один на базе Cloudflare R2 о котором писал ранее и могу сказать что всё прекрасно работает, с некоторыми оговорками конечно:

- каталог в Cloudflare R2 настраивается очень просто, без танцев с бубном, но требует ввода карты даже если не надо платить (на бесплатном тарифе в R2 можно хранить до 10GB и бесплатный исходящий трафик). Фактически там просто одна галочка которую надо включить
- подключение к pyIceberg также крайне простое, и в части загрузки данных, и в части запросов к ним. Для всего есть примеры
- а вот для прямого подключения DuckDB к этому каталогу танцы с бубном явно понадобятся, потому что в документации нет ничего про R2, примеры только с Amazon S3 Tables и Amazon Glue, скорее всего всё вскоре появится, но пока ничего нет.
- не заработало передача параметров фильтрации в функции table.scan, что решается последующим запросом к не фильтрованным записям, но при фильтрации требует очень много памяти;
- какие-либо UI для каталогов Apache Iceberg пока отсутствуют. Вернее есть встроенные инструменты в облачных сервисах и возможность посмотреть на загруженное в open source каталогах типа Nessie и Lakehouse, но всё это встроенные интерфейсы. Явно напрашивается UI для Iceberg browser и доступ к таблицам из веб интерфейса через DuckDB WASM к примеру.
- спецификация предусматривает возможность задания метаданных таблицам и пространствам имён, но у меня это не сработало. Впрочем я бы метаданные по пространствам имён хранил бы отдельно. Как то это логичнее
- хотя UI для каталога нет, но UI для доступа к данным в нём можно обеспечить через UI к DuckDB. Хотя для DuckDB нет пока инструкций для подключения к R2, но есть примеры прямого чтения метаданных по файлу манифеста в JSON
- есть ощущение что для работы с Iceberg и подобными таблицами напрашивается кеширующий клиент. Собственно я не первый и не один кто об этом думает.

В целом выглядит перспективно как долгосрочная технология, но ещё много что требует оптимизации и инструментарий только на стадии становления.

#datatools #data #dataengineering #dataanalytics
⚡️Конвейер данных: путь данных от сбора до анализа

Знаете ли вы, что данные, прежде чем стать действительно полезными, проходят долгий путь? Он называется «конвейер данных» и в его работе принимают участие разные специалисты: дата-инженеры, дата-аналитики, BI-аналитики.

Об этапах этого процесса расскажет на вебинаре Павел Беляев — руководитель группы дата-аналитиков в компании Яндекс eLama и автор телеграм-канала.

Что разберем:
🟠Весь процесс работы с данными: от источников данных до получения выводов;
🟠Разберем методики сбора данных: ETL и ELT;
🟠Построение витрин данных;
🟠Визуализацию, которая помогает принимать эффективные решения;
🟠И наконец: как по результатам проделанной работы с данными делать максимально верные и полезные выводы.

Тема богатая, тянет на целый курс, но за вебинар можно получить общее понимание процесса.

🕗 Встречаемся 15 апреля в 18:30 по МСК

😶Зарегистрироваться на бесплатный вебинар

#реклама #реклама_в_уютном_телеграм_канале
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/04/15 01:33:43
Back to Top
HTML Embed Code: