Telegram Group & Telegram Channel
NanoSage — это продвинутый инструмент для рекурсивного поиска и генерации отчётов, который работает локально на вашем компьютере, используя небольшие языковые модели.


NanoSage представляет собой «глубокого исследовательского ассистента», который:

- Выполняет рекурсивный поиск: система разбивает исходный запрос на подзапросы, чтобы исследовать тему с разных сторон.
- Интегрирует данные из нескольких источников: объединяются результаты локальных документов и веб-поиска, что позволяет получить максимально полное представление по теме.
Генерирует структурированные отчёты: итоговый результат оформляется в виде подробного Markdown-отчёта с оглавлением, отражающим путь исследования.
(См. подробное описание в )

Как работает NanoSage
1. Подготовка и конфигурация
Настройка параметров: с помощью командной строки задаются основные параметры, такие как основной запрос (--query), глубина рекурсии (--max_depth), использование веб-поиска (--web_search) и выбор модели для поиска.

Конфигурация через YAML: дополнительные настройки, например, минимальный порог релевантности, ограничение на длину запроса и др., задаются в конфигурационном файле.
2. Рекурсивный поиск и построение дерева знаний
Расширение запроса: исходный запрос обогащается с помощью метода «chain-of-thought», что позволяет выявить скрытые аспекты темы.
Генерация подзапросов: система автоматически разбивает исходный запрос на несколько релевантных подзапросов, каждый из которых анализируется отдельно.
Фильтрация по релевантности: применяется алгоритм для оценки релевантности каждого подзапроса, что помогает избежать «провалов» и ненужных отклонений от темы.
Сбор данных: для каждого релевантного подзапроса NanoSage загружает веб-страницы, анализирует локальные файлы и суммирует полученную информацию.
3. Генерация финального отчёта
: итоговый отчёт составляется с использованием LLM модели (например, Gemma 2B), которая интегрирует все собранные данные в связное и подробное описание.

- Структурирование информации: результат оформляется в виде Markdown-документа, где оглавление представляет собой граф поискового процесса, а каждый раздел подробно описывает полученные результаты.
(Подробнее о внутренней архитектуре см. и )

- Интеграция разных источников данных:
Объединение информации из веб-ресурсов и локальных документов повышает полноту и точность исследования.

- Баланс глубины и широты поиска:
Использование метода Монте-Карло помогает находить баланс между детальным анализом отдельных аспектов и широким охватом темы.

Гибкость и настройка:
Параметры, такие как выбор модели для поиска, глубина рекурсии и порог релевантности, можно легко настроить под конкретные задачи.

Если вам важны приватность, гибкость и детальный анализ информации, NanoSage может стать отличным решением для ваших исследовательских задач.

Github

#cli #local #algorithms #python3 #knowledgebase #ollama



group-telegram.com/data_analysis_ml/3193
Create:
Last Update:

NanoSage — это продвинутый инструмент для рекурсивного поиска и генерации отчётов, который работает локально на вашем компьютере, используя небольшие языковые модели.


NanoSage представляет собой «глубокого исследовательского ассистента», который:

- Выполняет рекурсивный поиск: система разбивает исходный запрос на подзапросы, чтобы исследовать тему с разных сторон.
- Интегрирует данные из нескольких источников: объединяются результаты локальных документов и веб-поиска, что позволяет получить максимально полное представление по теме.
Генерирует структурированные отчёты: итоговый результат оформляется в виде подробного Markdown-отчёта с оглавлением, отражающим путь исследования.
(См. подробное описание в )

Как работает NanoSage
1. Подготовка и конфигурация
Настройка параметров: с помощью командной строки задаются основные параметры, такие как основной запрос (--query), глубина рекурсии (--max_depth), использование веб-поиска (--web_search) и выбор модели для поиска.

Конфигурация через YAML: дополнительные настройки, например, минимальный порог релевантности, ограничение на длину запроса и др., задаются в конфигурационном файле.
2. Рекурсивный поиск и построение дерева знаний
Расширение запроса: исходный запрос обогащается с помощью метода «chain-of-thought», что позволяет выявить скрытые аспекты темы.
Генерация подзапросов: система автоматически разбивает исходный запрос на несколько релевантных подзапросов, каждый из которых анализируется отдельно.
Фильтрация по релевантности: применяется алгоритм для оценки релевантности каждого подзапроса, что помогает избежать «провалов» и ненужных отклонений от темы.
Сбор данных: для каждого релевантного подзапроса NanoSage загружает веб-страницы, анализирует локальные файлы и суммирует полученную информацию.
3. Генерация финального отчёта
: итоговый отчёт составляется с использованием LLM модели (например, Gemma 2B), которая интегрирует все собранные данные в связное и подробное описание.

- Структурирование информации: результат оформляется в виде Markdown-документа, где оглавление представляет собой граф поискового процесса, а каждый раздел подробно описывает полученные результаты.
(Подробнее о внутренней архитектуре см. и )

- Интеграция разных источников данных:
Объединение информации из веб-ресурсов и локальных документов повышает полноту и точность исследования.

- Баланс глубины и широты поиска:
Использование метода Монте-Карло помогает находить баланс между детальным анализом отдельных аспектов и широким охватом темы.

Гибкость и настройка:
Параметры, такие как выбор модели для поиска, глубина рекурсии и порог релевантности, можно легко настроить под конкретные задачи.

Если вам важны приватность, гибкость и детальный анализ информации, NanoSage может стать отличным решением для ваших исследовательских задач.

Github

#cli #local #algorithms #python3 #knowledgebase #ollama

BY Анализ данных (Data analysis)




Share with your friend now:
group-telegram.com/data_analysis_ml/3193

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Telegram Messenger Blocks Navalny Bot During Russian Election As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform.
from fr


Telegram Анализ данных (Data analysis)
FROM American