Telegram Group & Telegram Channel
Rethinking Attention with Performers
Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller
Статья: https://arxiv.org/abs/2009.14794
Код: https://github.com/google-research/google-research/tree/master/performer

Свеженький Performer, которому ещё недели не исполнилось, от сборной команды Гугла, DeepMind, Университета Кэмбриджа и Института Алана Тьюринга.

Окей, ладно, в реальности он появился ещё в июне в другой статье с названием “Masked Language Modeling for Proteins via Linearly Scalable Long-Context Transformers” (https://arxiv.org/abs/2006.03555), но она объявлена deprecated, так что он всё равно обновился (как минимум, добавился + к методу FAVOR).

Цель всё та же — заменить стандартное квадратичное внимание трансформера чем-то линейным. Но хочется это сделать так, чтобы точность была гарантирована, и при этом не полагаться на какие-то прайоры типа разреженности или низкоранговости.

Куча модификаций трансформера, также целящихся в его ускорение, не имеют целью аппроксимировать стандартное [софтмакс] внимание, а скорее предлагают более специфические механизмы внимания, часто за счёт дополнительных ограничений. Эти методы как правило без строгих гарантий относительно representational power и проверить их часто можно лишь эмпирически. Есть группа оптимизаций лишь по части памяти (обратимые слои или шаренные веса), но они не про аппроксимацию внимания. Из идейно близкого будет Linformer (https://www.group-telegram.com/fr/gonzo_ML.com/397), но его оценка внимания смещённая и он даёт большую среднеквадратичную ошибку.

Авторы предложили новый интересный подход под названием FAVOR+: Fast Attention Via positive Orthogonal Random features. В двух словах он даёт качество полноценного механизма внимания (с теоретическими гарантиями), но с линейной сложностью!

Сначала про FA (Fast Attention). Здесь используются ядерная функция (kernel) от рандомизированного мэппинга φ(x) фич размерности d в размерность r. Авторы предлагают вид φ(x) такой, что через него можно смоделировать большинство ядер, используемых на практике (Гауссово, софтмакс, PNG-ядра).

В частности для софтмакса получают несмещённую аппроксимацию через тригонометрические функции (sin, cos). Но с ними засада — рандомный маппинг с потенциально отрицательными значениями ведёт к нестабильному поведению, особенно когда ядро близко к нулю. Авторы взамен предлагают устойчивый механизм с положительными рандомными фичами. Это про R+ часть.

И наконец в фичи добавляют ортогональность, это ещё уменьшает дисперсию оценки софтмакса внимания. Это O-часть метода.

Желающие могут проверить предложенную теорию положительных ортогональных случайных фич, есть доказательства разных интересных свойств.

Далее идут эксперименты, где в стандартном трансформере заменяют механизм внимания на предложенный, оставляя всё остальное как есть (такой вот drop-in replacement). Получают линейное время и субквадратичную память. Кроме того, показывают, что и ортогональные и положительные фичи дают меньшую ошибку в реконструкции внимания, чем IID и тригонометрические.Также на разных задачах (например, на белковом TrEMBL) показывают, что в целом перформанс Performer’а соответствует нормальному трансформеру, чего не скажешь о перформансе Linformer’а или Reformer’а (https://www.group-telegram.com/fr/gonzo_ML.com/176).

Отдельный интерес — датасеты с длинными последовательностями, на которых обычный трансформер даже не посчитаешь. 6-слойный Performer равносилен 12-слойному Reformer’у, аналогично с 12/24 слоями.

Работа изначально делалась с прицелом на биологические последовательности, что очень круто. Кажется, наконец, появился прямо таки заточенный на биоинформатику трансформер!

История эта скорее всего сильно больше, чем только про трансформеры. Наверняка, оно будет полезно и в куче других мест с механизмами внимания. Большое поле для деятельности. Ну и тема про рандомные фичи, думаю, ещё не раз себя покажет с интересных сторон.



group-telegram.com/gonzo_ML/404
Create:
Last Update:

Rethinking Attention with Performers
Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller
Статья: https://arxiv.org/abs/2009.14794
Код: https://github.com/google-research/google-research/tree/master/performer

Свеженький Performer, которому ещё недели не исполнилось, от сборной команды Гугла, DeepMind, Университета Кэмбриджа и Института Алана Тьюринга.

Окей, ладно, в реальности он появился ещё в июне в другой статье с названием “Masked Language Modeling for Proteins via Linearly Scalable Long-Context Transformers” (https://arxiv.org/abs/2006.03555), но она объявлена deprecated, так что он всё равно обновился (как минимум, добавился + к методу FAVOR).

Цель всё та же — заменить стандартное квадратичное внимание трансформера чем-то линейным. Но хочется это сделать так, чтобы точность была гарантирована, и при этом не полагаться на какие-то прайоры типа разреженности или низкоранговости.

Куча модификаций трансформера, также целящихся в его ускорение, не имеют целью аппроксимировать стандартное [софтмакс] внимание, а скорее предлагают более специфические механизмы внимания, часто за счёт дополнительных ограничений. Эти методы как правило без строгих гарантий относительно representational power и проверить их часто можно лишь эмпирически. Есть группа оптимизаций лишь по части памяти (обратимые слои или шаренные веса), но они не про аппроксимацию внимания. Из идейно близкого будет Linformer (https://www.group-telegram.com/fr/gonzo_ML.com/397), но его оценка внимания смещённая и он даёт большую среднеквадратичную ошибку.

Авторы предложили новый интересный подход под названием FAVOR+: Fast Attention Via positive Orthogonal Random features. В двух словах он даёт качество полноценного механизма внимания (с теоретическими гарантиями), но с линейной сложностью!

Сначала про FA (Fast Attention). Здесь используются ядерная функция (kernel) от рандомизированного мэппинга φ(x) фич размерности d в размерность r. Авторы предлагают вид φ(x) такой, что через него можно смоделировать большинство ядер, используемых на практике (Гауссово, софтмакс, PNG-ядра).

В частности для софтмакса получают несмещённую аппроксимацию через тригонометрические функции (sin, cos). Но с ними засада — рандомный маппинг с потенциально отрицательными значениями ведёт к нестабильному поведению, особенно когда ядро близко к нулю. Авторы взамен предлагают устойчивый механизм с положительными рандомными фичами. Это про R+ часть.

И наконец в фичи добавляют ортогональность, это ещё уменьшает дисперсию оценки софтмакса внимания. Это O-часть метода.

Желающие могут проверить предложенную теорию положительных ортогональных случайных фич, есть доказательства разных интересных свойств.

Далее идут эксперименты, где в стандартном трансформере заменяют механизм внимания на предложенный, оставляя всё остальное как есть (такой вот drop-in replacement). Получают линейное время и субквадратичную память. Кроме того, показывают, что и ортогональные и положительные фичи дают меньшую ошибку в реконструкции внимания, чем IID и тригонометрические.Также на разных задачах (например, на белковом TrEMBL) показывают, что в целом перформанс Performer’а соответствует нормальному трансформеру, чего не скажешь о перформансе Linformer’а или Reformer’а (https://www.group-telegram.com/fr/gonzo_ML.com/176).

Отдельный интерес — датасеты с длинными последовательностями, на которых обычный трансформер даже не посчитаешь. 6-слойный Performer равносилен 12-слойному Reformer’у, аналогично с 12/24 слоями.

Работа изначально делалась с прицелом на биологические последовательности, что очень круто. Кажется, наконец, появился прямо таки заточенный на биоинформатику трансформер!

История эта скорее всего сильно больше, чем только про трансформеры. Наверняка, оно будет полезно и в куче других мест с механизмами внимания. Большое поле для деятельности. Ну и тема про рандомные фичи, думаю, ещё не раз себя покажет с интересных сторон.

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/404

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said.
from fr


Telegram gonzo-обзоры ML статей
FROM American