Notice: file_put_contents(): Write of 2346 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 14634 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Алексей Хохлов | Telegram Webview: khokhlovAR/872 -
Telegram Group & Telegram Channel
Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.



group-telegram.com/khokhlovAR/872
Create:
Last Update:

Сегодня в Стокгольме проходит церемония вручения Нобелевских премий 2024 года. Как известно, половина Нобелевской премии по химии присуждена сотрудникам компании Google DeepMind Демису Хассабису и Джону Джамперу, которые разработали исключительно эффективную компьютерную программу AlphaFold2 для предсказания пространственной структуры белков по известной последовательности аминокислотных остатков с использованием инструментов искусственного интеллекта (см. посты от 9 и 14 октября).

На волне этого несомненного успеха сотрудники компания Google DeepMind недавно опубликовали весьма содержательное эссе о перспективах использования возможностей искусственного интеллекта (ИИ) в науке:

https://deepmind.google/public-policy/ai-for-science/

Я прочитал, мне понравилось. Основные проблемы и перспективы развития описаны со знанием дела. Рекомендую ознакомиться. ТГ-канал Innovation & Research разместил русский перевод этого важного документа, который можно скачать по ссылке:

https://www.group-telegram.com/abulaphia/5321

Приведу несколько фрагментов этого эссе (не то, чтобы самых важных, просто для затравки интереса):

Несмотря на значительное расширение научного сообщества за последние полвека (только в США число научных сотрудников выросло более чем в семь раз), темпы общественного прогресса снизились. Современные ученые сталкиваются с рядом проблем, которые все чаще связаны с масштабом и сложностью, начиная с постоянно растущей библиографической базы, которую необходимо проанализировать, и заканчивая все более сложными экспериментами. Современные методы глубинного обучения очень хорошо приспособлены для решения подобных задач.

Если говорить об обнародовании результатов научных исследований, то есть ряд полезных подходов, таких как серверы препринтов и репозитории кодов, однако большинство ученых по-прежнему публикуют свои результаты в виде трудных для понимания научных статей, насыщенных профессиональным жаргоном. Это может скорее охладить, нежели разжечь интерес к работе ученых, в том числе со стороны властей, представителей бизнеса и общественности.

Методы ИИ создают потенциал для того, чтобы кардинально переосмыслить определенные научные задачи, в том числе что значит «читать» или «писать» научную статью в мире, где ученый может использовать Большую Языковую Модель для ее рецензирования, корректировки выводов с учетом аудитории или преобразования в формат интерактивной статьи или аудиогида.

Обычно при поиске оптимальной структуры молекулы, доказательства или алгоритма ученые применяют сочетание интуиции, метода проб и ошибок, итераций или вычислений методом «грубой силы». Однако эти методы не могут охватить огромное пространство возможных решений, и оптимальные варианты остаются неисследованными. ИИ способен открыть доступ к новым областям пространства поиска и в то же время быстрее находить решения, которые с наибольшей вероятностью окажутся действенными.

Системы ИИ способствуют научному пониманию не вопреки своей непрозрачности, а благодаря ей, поскольку эта непрозрачность может быть следствием их способности работать в высокоразмерных пространствах, которые могут быть непостижимы для людей, но необходимы для революционных научных открытий.

Подходы к научным исследованиям в академических кругах и промышленности, как правило, прямо противоположны. В научном сообществе царит демократия, а в промышленных лабораториях — иерархия. Недавно появилась новая волна научно-исследовательских институтов. Такие организации пытаются найти баланс между ориентацией на иерархическую координацию и расширением возможностей для инициативы ученых. Для некоторых организаций это означает сосредоточиться на одной конкретной проблеме с предварительно заданными контрольными точками, а для других — предложить ведущим исследователям более свободное финансирование.

BY Алексей Хохлов




Share with your friend now:
group-telegram.com/khokhlovAR/872

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. I want a secure messaging app, should I use Telegram? Ukrainian forces successfully attacked Russian vehicles in the capital city of Kyiv thanks to a public tip made through the encrypted messaging app Telegram, Ukraine's top law-enforcement agency said on Tuesday.
from fr


Telegram Алексей Хохлов
FROM American