Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nlpwanderer/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
NLP Wanderer | Telegram Webview: nlpwanderer/77 -
Telegram Group & Telegram Channel
Forwarded from Душный NLP
Технический отчёт Qwen2.5

Создатели линейки языковых моделей Qwen2.5 представили технический отчёт. Вот что мы из него узнали.

Претрейн

На претрейне использовали датасет объёмом 18 триллионов токенов против 7 триллионов у Qwen 2. В частности, были данные, применявшиеся для обучения Qwen2.5-Math и Qwen2.5-Coder, что позволило улучшить результаты модели в вопросах, связанных с математикой и программированием. Также применяли синтетические данные, сгенерированные Qwen2. Scaling laws использовали для предсказания оптимальных гиперпараметров — например, для learning rate или вычисления размера батча.

Во время первой фазы претрейна длина контекста составляла 4096 токенов, а на второй и финальной — 32 768 токенов для всех моделей семейства, кроме Qwen2.5-Turbo. В её случае претрейн проходил в четыре этапа, начинаясь с 32 768 токенов и заканчивая 262 144 токенами. В каждой фазе претрейна Qwen2.5-Turbo максимального значения достигали только 40% данных, а остальные были короче. По словам авторов, это позволило модели плавно адаптироваться к новой длине контекста.

Благодаря стратегиям YaRN и Dual Chunk Attention удалось увеличить максимальную длину обрабатываемой на инференсе последовательности в четыре раза: до миллиона токенов у Qwen2.5-Turbo и до 131 072 токенов у других версий.

Алаймент

SFT-датасет состоял из более чем миллиона примеров. Длина выхода Qwen2.5 — 8192 токена, в то время как обычно она составляет менее 2000. Улучшения удалось добиться благодаря наборам данных для длинных ответов. Разработчики использовали back-translation, чтобы генерировать запросы на основе данных для предварительного обучения, ограничивали длину выхода и отфильтровывали низкокачественные пары с помощью Qwen2.

Для задач, связанных с математикой, использовали CoT-данные из Qwen2.5-Math. Кроме того, применяли rejection sampling вместе с размеченными данными и моделью награды для пошагового рассуждения. Что касается генерации кода, то здесь было несколько агентов и пары инструкций на примерно 40 языках программирования.

В части instruction following модели генерировали инструкции, проверочные коды и юнит-тесты для перекрёстной проверки. Это позволило LLM лучше следовать промптам. А благодаря внедрению цепочек рассуждений в ответы, Qwen2.5 стала лучше извлекать информацию из структурированных данных — например, таблиц.

Использовали также модель перевода инструкций с высокоресурсных на низкоресурсные языки. Каждый полученный ответ проходил оценку на семантическое соответствие оригиналу, что позволило сохранить логическую структуру и стилистику текста.

Разработчики создали сотни системных промптов, чтобы обеспечить согласованность между ними и диалогами. Для оценки качества ответов применяли несколько методов автоматической аннотации, включая специализированную модель-критика и систему коллективной оценки с участием нескольких агентов. Сохраняли только те ответы, которые все системы оценки посчитали безупречными.

На этапе DPO в качестве позитивных примеров использовали хорошие ответы с SFT. Те же, которые не прошли проверку на SFT, стали негативными примерами.

Для создания датасета задействовали как автоматические, так и ручные методы оценки. В итоге получился набор данных из 150 тысяч пар. Qwen2.5 обучалась на нём в течение одной эпохи с применением Online Merging Optimizer c learning rate 7 × 10⁻⁷.

Reward-модель тренировали на двух наборах данных: общедоступном и проприетарном, содержащем запросы со сложной структурой. Ответы генерировались с чекпоинтов Qwen-моделей, прошедших файнтюнинг разными методами (SFT, DPO, RL), и при разных температурах. Для онлайн-обучения с подкреплением применяли Group Relative Policy Optimization (GRPO) с набором, аналогичным тому, что был на этапе RL. Для каждого запроса отбирали по 8 ответов.

Душный NLP



group-telegram.com/nlpwanderer/77
Create:
Last Update:

Технический отчёт Qwen2.5

Создатели линейки языковых моделей Qwen2.5 представили технический отчёт. Вот что мы из него узнали.

Претрейн

На претрейне использовали датасет объёмом 18 триллионов токенов против 7 триллионов у Qwen 2. В частности, были данные, применявшиеся для обучения Qwen2.5-Math и Qwen2.5-Coder, что позволило улучшить результаты модели в вопросах, связанных с математикой и программированием. Также применяли синтетические данные, сгенерированные Qwen2. Scaling laws использовали для предсказания оптимальных гиперпараметров — например, для learning rate или вычисления размера батча.

Во время первой фазы претрейна длина контекста составляла 4096 токенов, а на второй и финальной — 32 768 токенов для всех моделей семейства, кроме Qwen2.5-Turbo. В её случае претрейн проходил в четыре этапа, начинаясь с 32 768 токенов и заканчивая 262 144 токенами. В каждой фазе претрейна Qwen2.5-Turbo максимального значения достигали только 40% данных, а остальные были короче. По словам авторов, это позволило модели плавно адаптироваться к новой длине контекста.

Благодаря стратегиям YaRN и Dual Chunk Attention удалось увеличить максимальную длину обрабатываемой на инференсе последовательности в четыре раза: до миллиона токенов у Qwen2.5-Turbo и до 131 072 токенов у других версий.

Алаймент

SFT-датасет состоял из более чем миллиона примеров. Длина выхода Qwen2.5 — 8192 токена, в то время как обычно она составляет менее 2000. Улучшения удалось добиться благодаря наборам данных для длинных ответов. Разработчики использовали back-translation, чтобы генерировать запросы на основе данных для предварительного обучения, ограничивали длину выхода и отфильтровывали низкокачественные пары с помощью Qwen2.

Для задач, связанных с математикой, использовали CoT-данные из Qwen2.5-Math. Кроме того, применяли rejection sampling вместе с размеченными данными и моделью награды для пошагового рассуждения. Что касается генерации кода, то здесь было несколько агентов и пары инструкций на примерно 40 языках программирования.

В части instruction following модели генерировали инструкции, проверочные коды и юнит-тесты для перекрёстной проверки. Это позволило LLM лучше следовать промптам. А благодаря внедрению цепочек рассуждений в ответы, Qwen2.5 стала лучше извлекать информацию из структурированных данных — например, таблиц.

Использовали также модель перевода инструкций с высокоресурсных на низкоресурсные языки. Каждый полученный ответ проходил оценку на семантическое соответствие оригиналу, что позволило сохранить логическую структуру и стилистику текста.

Разработчики создали сотни системных промптов, чтобы обеспечить согласованность между ними и диалогами. Для оценки качества ответов применяли несколько методов автоматической аннотации, включая специализированную модель-критика и систему коллективной оценки с участием нескольких агентов. Сохраняли только те ответы, которые все системы оценки посчитали безупречными.

На этапе DPO в качестве позитивных примеров использовали хорошие ответы с SFT. Те же, которые не прошли проверку на SFT, стали негативными примерами.

Для создания датасета задействовали как автоматические, так и ручные методы оценки. В итоге получился набор данных из 150 тысяч пар. Qwen2.5 обучалась на нём в течение одной эпохи с применением Online Merging Optimizer c learning rate 7 × 10⁻⁷.

Reward-модель тренировали на двух наборах данных: общедоступном и проприетарном, содержащем запросы со сложной структурой. Ответы генерировались с чекпоинтов Qwen-моделей, прошедших файнтюнинг разными методами (SFT, DPO, RL), и при разных температурах. Для онлайн-обучения с подкреплением применяли Group Relative Policy Optimization (GRPO) с набором, аналогичным тому, что был на этапе RL. Для каждого запроса отбирали по 8 ответов.

Душный NLP

BY NLP Wanderer




Share with your friend now:
group-telegram.com/nlpwanderer/77

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from fr


Telegram NLP Wanderer
FROM American