Telegram Group & Telegram Channel
Как мы уже писали, Локк понаписал странного про числа и бесконечность. Так, число Локк определяет как простейшую и наиболее общую идею, единицу, единство. Вот и пойти тут пойми: это определение про числа, единицу или про единство. Но если не придираться, то общая идея все же будет ясна: когда мы смотрим на любую одну вещь, то понимаем, что она, вещь, — одна. Мы эту идею единичности понимаем одновременно и как идею целостности, даже если перед нами какая-то одна сложная вещь, например, толпа, группа студентов или армия. А потом мы просто складываем один и один и получаем два. Остальное дело техники, так получаются все числа. Тут целый букет проблем. Например, Беркли указывает на то, что он собственно не воспринимает, что вещь одна: во всяком случае, в том смысле, в котором он воспринимает цвета и формы. Нельзя указать на единицу в том смысле, в каком можно указать на красное пятно или круглый шар. Другая проблема состоит в том, что неясно, когда появляется идея единицы: когда я воспринимаю красное пятно, я одновременно вижу и его единичность? Это странно, так как идея красного, по Локку, это простая идея. Получается, что каждая простая идея всегда едет в связки с другой простой идеей, идеей единицы? Третья очевидная проблема подхода Локка состоит в том, что мы он не объясняет, почему мы не можем получить сложную идею, например, 2, не путем сложения 1 и 1, а путем вычитания 1 из 3. Четвертая трудность: как мы получаем идеи больших чисел? Вряд ли мы складываем единицы, чтобы получить 75674037. И, наконец, есть не только натуральные числа, и во времена Локка это было прекрасно известно.
Почти все это Локку высказал уже Лейбниц, и кое-то из этого повторяется в локковедческой литературе. Например, в книге "Джон Локк" R.I. Aaron'a (1937). Но есть и те, кто Локка защищают. Причем делают они это порой очень мощно. Например, Edward E. Dawson в 1959 году подключает Локка к дискуссиям о природе числа, которые были частью споров об основаниях математики век назад. И Локк в его глазах оказывается интуиционистом в отношении математики! И вот почему: потому что интуиционисты считают, что мы начинаем с понятия натуральных чисел, которые нам настолько знакомы, что они должны быть признаны основой математики. "В восприятии любого предмета мы представляем его себе как сущность, отвлекаясь от его частных свойств. Мы познаем также возможность неограниченного повторения этой сущности. Здесь-то и лежит источник понятия натурального числа" (Гейтинг А. Интуиционизм. Введение. М.: Мир, 1965, с. 22). Да, считает Доусон, Локк не объясняет не-целые числа, но он и не хочет этого делать! Вы говорите, что локковский подход к двойке неадекватен? Ответ: адекватен, потому что ... ну а какой тогда адекватный? Не существует, считает Доусон, никакого другого определения для целого числа, кроме индуктивного определения, данного в терминах повторения применения функции следования. Но Локк не дает такого определения числа. Число он определяет как простейшую и наиболее общую идею, а вот модусы числа порождаются сложением. Ох-ох.

Интересно, если бы Локк узнал, что он интуиционист — принял бы он то, что придется отказаться от закона исключенного третьего?



group-telegram.com/philosophycafemoscow/2186
Create:
Last Update:

Как мы уже писали, Локк понаписал странного про числа и бесконечность. Так, число Локк определяет как простейшую и наиболее общую идею, единицу, единство. Вот и пойти тут пойми: это определение про числа, единицу или про единство. Но если не придираться, то общая идея все же будет ясна: когда мы смотрим на любую одну вещь, то понимаем, что она, вещь, — одна. Мы эту идею единичности понимаем одновременно и как идею целостности, даже если перед нами какая-то одна сложная вещь, например, толпа, группа студентов или армия. А потом мы просто складываем один и один и получаем два. Остальное дело техники, так получаются все числа. Тут целый букет проблем. Например, Беркли указывает на то, что он собственно не воспринимает, что вещь одна: во всяком случае, в том смысле, в котором он воспринимает цвета и формы. Нельзя указать на единицу в том смысле, в каком можно указать на красное пятно или круглый шар. Другая проблема состоит в том, что неясно, когда появляется идея единицы: когда я воспринимаю красное пятно, я одновременно вижу и его единичность? Это странно, так как идея красного, по Локку, это простая идея. Получается, что каждая простая идея всегда едет в связки с другой простой идеей, идеей единицы? Третья очевидная проблема подхода Локка состоит в том, что мы он не объясняет, почему мы не можем получить сложную идею, например, 2, не путем сложения 1 и 1, а путем вычитания 1 из 3. Четвертая трудность: как мы получаем идеи больших чисел? Вряд ли мы складываем единицы, чтобы получить 75674037. И, наконец, есть не только натуральные числа, и во времена Локка это было прекрасно известно.
Почти все это Локку высказал уже Лейбниц, и кое-то из этого повторяется в локковедческой литературе. Например, в книге "Джон Локк" R.I. Aaron'a (1937). Но есть и те, кто Локка защищают. Причем делают они это порой очень мощно. Например, Edward E. Dawson в 1959 году подключает Локка к дискуссиям о природе числа, которые были частью споров об основаниях математики век назад. И Локк в его глазах оказывается интуиционистом в отношении математики! И вот почему: потому что интуиционисты считают, что мы начинаем с понятия натуральных чисел, которые нам настолько знакомы, что они должны быть признаны основой математики. "В восприятии любого предмета мы представляем его себе как сущность, отвлекаясь от его частных свойств. Мы познаем также возможность неограниченного повторения этой сущности. Здесь-то и лежит источник понятия натурального числа" (Гейтинг А. Интуиционизм. Введение. М.: Мир, 1965, с. 22). Да, считает Доусон, Локк не объясняет не-целые числа, но он и не хочет этого делать! Вы говорите, что локковский подход к двойке неадекватен? Ответ: адекватен, потому что ... ну а какой тогда адекватный? Не существует, считает Доусон, никакого другого определения для целого числа, кроме индуктивного определения, данного в терминах повторения применения функции следования. Но Локк не дает такого определения числа. Число он определяет как простейшую и наиболее общую идею, а вот модусы числа порождаются сложением. Ох-ох.

Интересно, если бы Локк узнал, что он интуиционист — принял бы он то, что придется отказаться от закона исключенного третьего?

BY Философское кафе


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/philosophycafemoscow/2186

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted.
from fr


Telegram Философское кафе
FROM American