Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML



group-telegram.com/reliable_ml/134
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/134

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. He adds: "Telegram has become my primary news source." Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from fr


Telegram Reliable ML
FROM American