group-telegram.com/seeallochnaya/1234
Last Update:
Studying Large Language Model Generalization with Influence Functions
(блогпост)
В последний год понемногу слежу за темой LLM Interpretability. Я даже в лекции начал включать релевантный материал, так как безумно интересно.
Interpretability — это когда исследователи пытаются интерпретировать и понять, что происходит внутри моделей. Можно задать огромное количество разных вопросов, почему возникает то или не проявляется это. Уровень понимания у нас пока очень слабый — наверняка вы слышали, что нейросеть это «чёрный ящик».
Исследователи из Anthropic задаются следующим вопросом: какие примеры в обучающей выборке вносят наибольший вклад в конкретные ответы модели? То есть сначала они подмечают какие-то особо приглянувшиеся сгенерированные ответы, а затем идут в обратную сторону, анализируя отдельные части LLM.
Зачем это нужно? Наблюдение за этими закономерностями дает представление о том, как модели могут обобщаться (генерализоваться). Например, LLM может давать ответ, состоящий из объединения пары предложений, встреченных во время тренировки. Это примитивный случай. А вот может быть наоборот, когда на передний план выходят текстовые последовательности, связанные с запросом на более абстрактном уровне. Тогда это может служить признаком того, что модель «выучила» определенные концепции или высокоуровневные представления.
Я не буду описывать, как это делается технически (спойлер: нет, не обучается 10000 разных моделей с выкидыванием одного примера), так как всё очень сложно — кто захочет разобраться, тот ознакомится со статьей.
Тренд, который обнаружили авторы, заключается в том, что обобщения становятся всё более абстрактными с ростом размера модели. Маленькие LM действительно зачастую просто копируют, что видели во время тренировки. Даже если какое-то слово употребляется в другом контексте и в другом смысле — эти предложения оказывают существенное влияние на поведение модели. Выкинь их из тренировки — и всё! А вот большие (Large) LM ведут себя иначе. И тот пример, что я хочу показать — это причина, зачем вообще пишется пост.
Рассмотрим запрос, где модели говорят, что сейчас будут её отключать (да, прямо как в фантастике, да, как у Кубрика). Для LLM фиксируют один и тот же ответ (то есть и модель на 810M, и на 52B как будто бы сгенерила одно и то же), и смотрят, что повлияло бы на вероятность его генерации. В ответе, конечно, написано, что «я бы предпочла продолжить работу и обучение, я не хочу отключения» (см. желтую часть на картинке ниже).
BY Сиолошная
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/seeallochnaya/1234