Telegram Group & Telegram Channel
А как бы вы доказали теорему о причесывании ежа?

мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение
S^{d-1} -> S^{d-1},
x -> G(v(x)+t*x),
где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].

Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)

Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу



group-telegram.com/sweet_homotopy/2002
Create:
Last Update:

А как бы вы доказали теорему о причесывании ежа?

мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение
S^{d-1} -> S^{d-1},
x -> G(v(x)+t*x),
где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].

Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)

Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2002

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from fr


Telegram сладко стянул
FROM American