Telegram Group & Telegram Channel
​​Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке.
В 2020-х расклад сил в технологическом соревновании стало предельно просто оценивать. Революция «Глубокого обучения Больших моделей на Больших данных» превратила вычислительную мощность в ключевой фактор прогресса практически всех интеллектуально емких индустрий: от разработки новых лекарств до новых видов вооружений. А там, где задействован ИИ (а он уже почти всюду) вычислительная мощность, вообще, решает все.

Формула превосходства стала предельно проста:
• собери как можно больше данных;
• создай как можно более сложную (по числу параметров) модель;
• обучи модель как можно быстрее.
Тот, у кого будет «больше-больше-быстрее» имеет максимально высокие шансы выиграть в технологической гонке. А здесь все упирается в вычислительную мощность «железа» (HW) и алгоритмов (SW).

И при всем уважении к алгоритмам, но в этой паре их роль №2. Ибо алгоритм изобрести, скопировать или даже украсть все же проще, чем HW. «Железо» либо есть, либо его нет.
Это мы проходили еще в СССР. Это же стало даже более критическим фактором в эпоху «Глубокого обучения Больших моделей на Больших данных».

Вот два самых свежих примера.
1) Facebook раскрыл свою систему рекомендаций. Она построена на модели рекомендаций глубокого обучения (DLRM). Содержит эта модель 12 триллионов параметров и требует суммарного объема вычислений более 10 Petaflop/s-days.
2) Microsoft скоро продемонстрирует модель для ИИ с 1 триллионом параметров. Она работает на системе вычислительной производительности 502 Petaflop/s на 3072 графических процессорах.

Для сравнения, языковая модель GPT-2, разработанная OpenAI 2 года назад, поразила мир тем, что у нее было 1,5 миллиарда параметров. А GPT-3, вышедшая в 2020 имела уже 175 млрд. параметров.
Как видите, модели с триллионами параметров – уже данность. И чтобы их учить не годами, а днями, нужно «железо» сумасшедшей вычислительной мощности.

Т.е. сами видите, - есть «железо» - участвуй в гонке, нет «железа» - кури в сторонке.

На приложенной картинке свежие данные о размерах моделей и требуемой для них вычислительной мощности.
#HPC #ИИгонка



group-telegram.com/theworldisnoteasy/1262
Create:
Last Update:

​​Есть «железо» - участвуй в гонке. Нет «железа» - кури в сторонке.
В 2020-х расклад сил в технологическом соревновании стало предельно просто оценивать. Революция «Глубокого обучения Больших моделей на Больших данных» превратила вычислительную мощность в ключевой фактор прогресса практически всех интеллектуально емких индустрий: от разработки новых лекарств до новых видов вооружений. А там, где задействован ИИ (а он уже почти всюду) вычислительная мощность, вообще, решает все.

Формула превосходства стала предельно проста:
• собери как можно больше данных;
• создай как можно более сложную (по числу параметров) модель;
• обучи модель как можно быстрее.
Тот, у кого будет «больше-больше-быстрее» имеет максимально высокие шансы выиграть в технологической гонке. А здесь все упирается в вычислительную мощность «железа» (HW) и алгоритмов (SW).

И при всем уважении к алгоритмам, но в этой паре их роль №2. Ибо алгоритм изобрести, скопировать или даже украсть все же проще, чем HW. «Железо» либо есть, либо его нет.
Это мы проходили еще в СССР. Это же стало даже более критическим фактором в эпоху «Глубокого обучения Больших моделей на Больших данных».

Вот два самых свежих примера.
1) Facebook раскрыл свою систему рекомендаций. Она построена на модели рекомендаций глубокого обучения (DLRM). Содержит эта модель 12 триллионов параметров и требует суммарного объема вычислений более 10 Petaflop/s-days.
2) Microsoft скоро продемонстрирует модель для ИИ с 1 триллионом параметров. Она работает на системе вычислительной производительности 502 Petaflop/s на 3072 графических процессорах.

Для сравнения, языковая модель GPT-2, разработанная OpenAI 2 года назад, поразила мир тем, что у нее было 1,5 миллиарда параметров. А GPT-3, вышедшая в 2020 имела уже 175 млрд. параметров.
Как видите, модели с триллионами параметров – уже данность. И чтобы их учить не годами, а днями, нужно «железо» сумасшедшей вычислительной мощности.

Т.е. сами видите, - есть «железо» - участвуй в гонке, нет «железа» - кури в сторонке.

На приложенной картинке свежие данные о размерах моделей и требуемой для них вычислительной мощности.
#HPC #ИИгонка

BY Малоизвестное интересное




Share with your friend now:
group-telegram.com/theworldisnoteasy/1262

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. 'Wild West' Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from fr


Telegram Малоизвестное интересное
FROM American