Telegram Group & Telegram Channel
Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/82
Create:
Last Update:

Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab

BY Gentech Lab




Share with your friend now:
group-telegram.com/gentech_lab/82

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from us


Telegram Gentech Lab
FROM American