Telegram Group & Telegram Channel
Предсказание токенов сделано последовательным. Для предсказания D дополнительных токенов используется D MTP модулей (MTP Modules), у них шареные эмбеддинги и выходная голова. На вход им прилетает выход слоя основной модели или предыдущего MTP модуля, а также эмбеддинги следующего токена, всё нормализуется RMSNorm и конкатенируется. Каждый модуль считает кроссэнтропийный лосс, по всем модулям вычисляется средний лосс и он с коэффициентом 𝜆 выступает как дополнительный лосс модели (0.3 для первых 10T токенов, 0.1 для последующих 4.8T). При инференсе MTP модули отбрасываются, но можно и использовать для speculative decoding.

MTP стабильно улучшает перформанс на большинстве бенчмарков. В экспериментах acceptance rate для следующего токена находился в диапазоне от 85% до 90%. В комбинации со speculative decoding TPS возрастает в 1.8 раза.


❇️ Другая интересная часть — инфраструктура.

DeepSeek-V3 обучался на кластере из 2048 NVIDIA H800 GPU. Напомню, что H800 — это урезанная H100 для Китайского рынка. У H800 ослаблен interconnect (bandwidth ниже более чем в два раза и количество линков NVLink тоже уменьшено), а также в десятки раз понижены флопсы для FP64 — для нейросетей неважно, а атомные бомбы считать хуже. Чтобы нумерация была “особенно логичной”, H200 — это улучшенная версия H100 с большим объёмом более быстрой памяти.

Для обучения внутри компании написали свой закрытый фреймворк HAI-LLM.

DeepSeek-V3 использует 16-way Pipeline Parallelism (PP), 64-way Expert Parallelism (EP) с 8 нодами, и ZeRO-1 Data Parallelism (DP). Для эффективного PP разработали алгоритм DualPipe, перекрывающий фазы коммуникации и вычисления в forward и backward фазах. Приводит к уменьшению pipeline bubbles. Благодаря суровым оптимизациям памяти обошлись без Tensor Parallelism (TP). Кроме этого разработали эффективные cross-node all-to-all communication kernels.


❇️ Но самая интересная для меня часть здесь — это FP8 Training.

Кто не знает, что такое FP32, FP16, BF16, вэлкам в мой старый пост: https://moocaholic.medium.com/fp64-fp32-fp16-bfloat16-tf32-and-other-members-of-the-zoo-a1ca7897d407. FP8 там нет, но по аналогии поймёте, что это такое.

Кажется, это первая открытая реально большая продакшн модель, обученная в FP8. Llama3, например, вроде как в BF16 обучалась, и я так понимаю это примерно стандарт, ну либо микс FP32/16. Да, была более ранняя работа (https://arxiv.org/abs/2409.12517) от израильтян из Habana (теперь Интел). Там в FP8 обучали 7B модель на 2T токенов на интеловско-хабановских же Gaudi2 и получали качество сравнимое с BF16 при улучшении throughput на 34%. Была и ещё более ранняя FP8-LM (https://arxiv.org/abs/2310.18313) от Microsoft, где обучали GPT-175B. Они даже библиотечку опубликовали (https://github.com/Azure/MS-AMP). В принципе не удивлюсь, если OpenAI в итоге тоже внутри на FP8 перешли, но от них молчок. Что там у Гугла тоже не поймёшь. Но ставлю на BF16 🙂

В реальности у DeepSeek, конечно, тоже mixed precision — какие-то вещи по-прежнему считаются в более полных форматах, BF16 или даже FP32. В таких форматах остались: embedding module, the output head, MoE gating modules, normalization operators, and attention operators (вот тут я не совсем понял, какие именно). Также в большей разрядности пишут master weights, weight gradients, и optimizer states. Это всё повышает стабильность обучения, кажется, основную проблему низкоразрядных форматов (ну за пределами отсутствия поддержки в кернелах и железе). Но большинство тяжёлых вычислений в FP8. Отчасти поэтому, я думаю, они сумели сильно сэкономить в деньгах на компьют. В идеальной теории это повышает доступный компьют в два раза, одновременно уменьшая во столько же требования к памяти.

Попутно реализовали сколько-то стратегий для повышения точности, например, более хитрое квантование, повышенную точность для аккумуляции, и приоритет мантиссы над экспонентой, благодаря чему для всех тензоров используется формат E4M3 (4 бита на экспоненту и 3 на мантиссу), а не смесь E4M3 и E5M2.



group-telegram.com/gonzo_ML/3294
Create:
Last Update:

Предсказание токенов сделано последовательным. Для предсказания D дополнительных токенов используется D MTP модулей (MTP Modules), у них шареные эмбеддинги и выходная голова. На вход им прилетает выход слоя основной модели или предыдущего MTP модуля, а также эмбеддинги следующего токена, всё нормализуется RMSNorm и конкатенируется. Каждый модуль считает кроссэнтропийный лосс, по всем модулям вычисляется средний лосс и он с коэффициентом 𝜆 выступает как дополнительный лосс модели (0.3 для первых 10T токенов, 0.1 для последующих 4.8T). При инференсе MTP модули отбрасываются, но можно и использовать для speculative decoding.

MTP стабильно улучшает перформанс на большинстве бенчмарков. В экспериментах acceptance rate для следующего токена находился в диапазоне от 85% до 90%. В комбинации со speculative decoding TPS возрастает в 1.8 раза.


❇️ Другая интересная часть — инфраструктура.

DeepSeek-V3 обучался на кластере из 2048 NVIDIA H800 GPU. Напомню, что H800 — это урезанная H100 для Китайского рынка. У H800 ослаблен interconnect (bandwidth ниже более чем в два раза и количество линков NVLink тоже уменьшено), а также в десятки раз понижены флопсы для FP64 — для нейросетей неважно, а атомные бомбы считать хуже. Чтобы нумерация была “особенно логичной”, H200 — это улучшенная версия H100 с большим объёмом более быстрой памяти.

Для обучения внутри компании написали свой закрытый фреймворк HAI-LLM.

DeepSeek-V3 использует 16-way Pipeline Parallelism (PP), 64-way Expert Parallelism (EP) с 8 нодами, и ZeRO-1 Data Parallelism (DP). Для эффективного PP разработали алгоритм DualPipe, перекрывающий фазы коммуникации и вычисления в forward и backward фазах. Приводит к уменьшению pipeline bubbles. Благодаря суровым оптимизациям памяти обошлись без Tensor Parallelism (TP). Кроме этого разработали эффективные cross-node all-to-all communication kernels.


❇️ Но самая интересная для меня часть здесь — это FP8 Training.

Кто не знает, что такое FP32, FP16, BF16, вэлкам в мой старый пост: https://moocaholic.medium.com/fp64-fp32-fp16-bfloat16-tf32-and-other-members-of-the-zoo-a1ca7897d407. FP8 там нет, но по аналогии поймёте, что это такое.

Кажется, это первая открытая реально большая продакшн модель, обученная в FP8. Llama3, например, вроде как в BF16 обучалась, и я так понимаю это примерно стандарт, ну либо микс FP32/16. Да, была более ранняя работа (https://arxiv.org/abs/2409.12517) от израильтян из Habana (теперь Интел). Там в FP8 обучали 7B модель на 2T токенов на интеловско-хабановских же Gaudi2 и получали качество сравнимое с BF16 при улучшении throughput на 34%. Была и ещё более ранняя FP8-LM (https://arxiv.org/abs/2310.18313) от Microsoft, где обучали GPT-175B. Они даже библиотечку опубликовали (https://github.com/Azure/MS-AMP). В принципе не удивлюсь, если OpenAI в итоге тоже внутри на FP8 перешли, но от них молчок. Что там у Гугла тоже не поймёшь. Но ставлю на BF16 🙂

В реальности у DeepSeek, конечно, тоже mixed precision — какие-то вещи по-прежнему считаются в более полных форматах, BF16 или даже FP32. В таких форматах остались: embedding module, the output head, MoE gating modules, normalization operators, and attention operators (вот тут я не совсем понял, какие именно). Также в большей разрядности пишут master weights, weight gradients, и optimizer states. Это всё повышает стабильность обучения, кажется, основную проблему низкоразрядных форматов (ну за пределами отсутствия поддержки в кернелах и железе). Но большинство тяжёлых вычислений в FP8. Отчасти поэтому, я думаю, они сумели сильно сэкономить в деньгах на компьют. В идеальной теории это повышает доступный компьют в два раза, одновременно уменьшая во столько же требования к памяти.

Попутно реализовали сколько-то стратегий для повышения точности, например, более хитрое квантование, повышенную точность для аккумуляции, и приоритет мантиссы над экспонентой, благодаря чему для всех тензоров используется формат E4M3 (4 бита на экспоненту и 3 на мантиссу), а не смесь E4M3 и E5M2.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3294

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups.
from us


Telegram gonzo-обзоры ML статей
FROM American