The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unnecessary to describe the emergent macroscopic properties. In traditional physical applications, the RG largely builds on the notions of homogeneity, symmetry, geometry and locality to define metric distances, scale transformations and self-similar coarse-graining schemes. More recently, various approaches have tried to extend RG concepts to the ubiquitous realm of complex networks where explicit geometric coordinates do not necessarily exist, nodes and subgraphs can have very different properties, and homogeneous lattice-like symmetries are absent. The strong heterogeneity of real-world networks significantly complicates the definition of consistent renormalization procedures. In this review, we discuss the main attempts, the most important advances, and the remaining open challenges on the road to network renormalization.
The renormalization group (RG) is a powerful theoretical framework developed to consistently transform the description of configurations of systems with many degrees of freedom, along with the associated model parameters and coupling constants, across different levels of resolution. It also provides a way to identify critical points of phase transitions and study the system's behaviour around them by distinguishing between relevant and irrelevant details, the latter being unnecessary to describe the emergent macroscopic properties. In traditional physical applications, the RG largely builds on the notions of homogeneity, symmetry, geometry and locality to define metric distances, scale transformations and self-similar coarse-graining schemes. More recently, various approaches have tried to extend RG concepts to the ubiquitous realm of complex networks where explicit geometric coordinates do not necessarily exist, nodes and subgraphs can have very different properties, and homogeneous lattice-like symmetries are absent. The strong heterogeneity of real-world networks significantly complicates the definition of consistent renormalization procedures. In this review, we discuss the main attempts, the most important advances, and the remaining open challenges on the road to network renormalization.
The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted.
from hk