Telegram Group & Telegram Channel
📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش اول:

● بهینه‌سازی و طراحی سازه‌ها یک فرآیند پیچیده است که نیازمند تحلیل پارامترهای متعددی از جمله ابعاد، شکل، جنس متریال و نیروهای وارد بر سازه می‌باشد. بطور سنتی، این بهینه‌سازی به کمک روش‌های تحلیل عددی مانند تحلیل اجزاء محدود (FEM) انجام می‌شود که زمان‌بر و پرهزینه است.

● هوش مصنوعی و الگوریتم‌های بهینه‌سازی تکاملی همچون الگوریتم ژنتیک (Genetic Algorithm) و الگوریتم‌های یادگیری تقویتی (Reinforcement Learning) با تقلید از فرآیند تکامل طبیعی یا تصمیم‌گیری در شرایط پیچیده، به جستجوی ترکیب‌های مختلف پارامترهای طراحی می‌پردازند و می‌توانند به سرعت به بهینه‌ترین طرح‌ها دست یابند.

● برای پیش‌بینی رفتار سازه‌ها تحت شرایط مختلف (مانند زلزله، باد، بارگذاری‌های ناگهانی و غیره) نیاز به مدل‌های شبیه‌سازی پیچیده‌ای داریم. مدل‌های یادگیری عمیق (Deep Learning) و شبکه‌های عصبی مصنوعی (Artificial Neural Networks) می‌توانند با استفاده از داده‌های تاریخی و تجربی، رفتار سازه‌ها را پیش‌بینی کنند. این مدل‌ها می‌توانند الگوهای مخفی در داده‌ها را شناسایی کنند و به این ترتیب نتایج دقیقی برای پیش‌بینی آسیب‌ها و نقاط ضعف احتمالی در سازه‌ها ارائه دهند. برای مثال، یک شبکه عصبی می‌تواند آموزش ببیند که چگونه رفتار یک ساختمان را تحت تأثیر زلزله‌ با شدت‌های مختلف پیش‌بینی کند و مشخص کند که کدام بخش‌های ساختمان دارای احتمال بیشتری برای خرابی هستند.

● یکی از بزرگ‌ترین چالش‌ها در مهندسی عمران، حل مسائل پیچیده تحلیل سازه‌ای است که نیازمند محاسبات عددی سنگین و مدل‌سازی‌های پیچیده می‌باشد. هوش مصنوعی می‌تواند به تحلیل سریع‌تر و دقیق‌تر مدل‌های پیچیده سازه‌ای کمک کند. برای مثال، می‌توان از مدل‌های یادگیری ماشین به عنوان جایگزین یا مکمل تحلیل‌های اجزاء محدود (FEM) استفاده کرد. مدل‌های هوش مصنوعی می‌توانند بطور خودکار ویژگی‌های مهم سازه‌ای مانند تنش و تغییرشکل را از روی داده‌های قبلی بیاموزند و در زمان تحلیل سازه‌ها، نتایج را با دقت بالا و در زمان کوتاه‌تری پیش‌بینی کنند. این امر می‌تواند به مهندسان اجازه دهد تا طرح‌های مختلف را سریع‌تر بررسی و ارزیابی کنند.

@EngSociety



group-telegram.com/EngSociety/870
Create:
Last Update:

📍کاربرد هوش مصنوعی در طراحی و بهینه‌سازی سازه‌ها - بخش اول:

● بهینه‌سازی و طراحی سازه‌ها یک فرآیند پیچیده است که نیازمند تحلیل پارامترهای متعددی از جمله ابعاد، شکل، جنس متریال و نیروهای وارد بر سازه می‌باشد. بطور سنتی، این بهینه‌سازی به کمک روش‌های تحلیل عددی مانند تحلیل اجزاء محدود (FEM) انجام می‌شود که زمان‌بر و پرهزینه است.

● هوش مصنوعی و الگوریتم‌های بهینه‌سازی تکاملی همچون الگوریتم ژنتیک (Genetic Algorithm) و الگوریتم‌های یادگیری تقویتی (Reinforcement Learning) با تقلید از فرآیند تکامل طبیعی یا تصمیم‌گیری در شرایط پیچیده، به جستجوی ترکیب‌های مختلف پارامترهای طراحی می‌پردازند و می‌توانند به سرعت به بهینه‌ترین طرح‌ها دست یابند.

● برای پیش‌بینی رفتار سازه‌ها تحت شرایط مختلف (مانند زلزله، باد، بارگذاری‌های ناگهانی و غیره) نیاز به مدل‌های شبیه‌سازی پیچیده‌ای داریم. مدل‌های یادگیری عمیق (Deep Learning) و شبکه‌های عصبی مصنوعی (Artificial Neural Networks) می‌توانند با استفاده از داده‌های تاریخی و تجربی، رفتار سازه‌ها را پیش‌بینی کنند. این مدل‌ها می‌توانند الگوهای مخفی در داده‌ها را شناسایی کنند و به این ترتیب نتایج دقیقی برای پیش‌بینی آسیب‌ها و نقاط ضعف احتمالی در سازه‌ها ارائه دهند. برای مثال، یک شبکه عصبی می‌تواند آموزش ببیند که چگونه رفتار یک ساختمان را تحت تأثیر زلزله‌ با شدت‌های مختلف پیش‌بینی کند و مشخص کند که کدام بخش‌های ساختمان دارای احتمال بیشتری برای خرابی هستند.

● یکی از بزرگ‌ترین چالش‌ها در مهندسی عمران، حل مسائل پیچیده تحلیل سازه‌ای است که نیازمند محاسبات عددی سنگین و مدل‌سازی‌های پیچیده می‌باشد. هوش مصنوعی می‌تواند به تحلیل سریع‌تر و دقیق‌تر مدل‌های پیچیده سازه‌ای کمک کند. برای مثال، می‌توان از مدل‌های یادگیری ماشین به عنوان جایگزین یا مکمل تحلیل‌های اجزاء محدود (FEM) استفاده کرد. مدل‌های هوش مصنوعی می‌توانند بطور خودکار ویژگی‌های مهم سازه‌ای مانند تنش و تغییرشکل را از روی داده‌های قبلی بیاموزند و در زمان تحلیل سازه‌ها، نتایج را با دقت بالا و در زمان کوتاه‌تری پیش‌بینی کنند. این امر می‌تواند به مهندسان اجازه دهد تا طرح‌های مختلف را سریع‌تر بررسی و ارزیابی کنند.

@EngSociety

BY کانال صنفی جامعه مهندسی


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/EngSociety/870

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych.
from hk


Telegram کانال صنفی جامعه مهندسی
FROM American