Telegram Group & Telegram Channel
COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub



group-telegram.com/abstractDL/311
Create:
Last Update:

COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)

С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁

Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.

Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.

Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.

Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.

P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.

Статья, GitHub

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/311

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from hk


Telegram AbstractDL
FROM American