Telegram Group & Telegram Channel
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone [email protected]:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml



group-telegram.com/ai_machinelearning_big_data/6559
Create:
Last Update:

🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone [email protected]:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml

BY Machinelearning









Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/6559

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from hk


Telegram Machinelearning
FROM American