Notice: file_put_contents(): Write of 5488 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13680 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2387 -
Telegram Group & Telegram Channel
⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2387
Create:
Last Update:

⚡️Как ускорить диффузию ч1 - Model Distillation

Начинаю серию постов про основные методы для ускорения диффузионных моделей, т.к это один из моих главных научных интересов. В первой части поговорим про дистилляцию. Говорить будем в разрезе text2img, но многие из этих техник могут применяться и для видео.

Мы знаем, что диффузии из коробки требуется много прогонов по сети (шагов), чтобы сгенерить картинку во время инференса. Поэтому появился целый пласт работ, которые выдают вообще адовые ускорения. Ну такой вот примерно рецепт усредненный для дистиляции text2image моделей, потому что вариаций масса: берешь огромную модель учителя, которая генерит медленно, но качественно, и учишь студента предсказывать за 1-4 шага выходы учителя, полученные за много шагов. Магическим образом это работает. Но есть много нюансов, понять которые можно из следующих работ:

Model Distillation:
Guidance and Progressive Distillation - классика жанра, где впервые провели дистилляцию до 4 шагов.
Consistency Models - Более хитрая дистилляция, где на каждом шагу пытаемся предсказать конечный результат.
Improved Techniques for Training Consistency Models - то же самое, но с улучшенным расписанием шагов
SnapFusion - пруним архитектуру Unet и дистиллируем в меньшее число шагов с помощью Progressive Distillation.
InstaFlow - формулируем диффузии как линейный Flow Matching и дистиллируем в несколько раундов, пока не достигнем генерации за один шаг.
UfoGen - это Diffusion + GAN, где дискриминатор инициализируется UNet-ом диффузии.
Adversarial Diffusion Distillation (SDXL-Turbo) это дистилляция Diffusion + GAN, но дискриминатор тут основан на фичах DINOv2.
Latent Adversarial Diffusion Distillation (SD3 Turbo) — тоже самое только в latent фичах.
Imagine Flash — моя статья о дистилляции в 3 шага.

>> Читать часть 2

#ликбез
@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2387

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number.
from hk


Telegram эйай ньюз
FROM American