Telegram Group & Telegram Channel
О карьерных траекториях в AI – часть 1

Мне часто пишут в личку, мол «не так много понимаю в AI, но очень интересно и хочется поглубже разобраться». Спрашивают куда пойти учиться и с чего начать.

Давайте я покажу пару примеров возможных карьерных траекторий.

Дано: студент технарь по физике/математике/программированию. Есть техническая база, но не шарю в ML и AI, и в моем универе этого не преподают.

Что делать?
🔄Первый вариант (самый прямолинейный). Ищете магистратуру, где есть ML и AI в программе. Лучше в Европе или в других развитых странах, где есть научные институты и лабы, публикующие работы в сфере AI. Так вы сможете получить наиболее актуальные знание от практикующих профессоров.

Цена вопроса: Например, в Германии и Франции в государственных университетах обучение стоит символических денег даже для иностранных студентов. В Heidelberg University, где я закончил PhD, учеба в маге для иностранца стоит 3000€/год, не включая расходы на жизнь. Причем всегда есть возможность еще и стипендию выбить. А если если бабки не вопрос, то возможностей еще больше.

Посла маги можно гордо крутить нейронки в продакшене или даже, если повезет, найти позицию Research Engineer (но их очень мало) и помогать сайнтистам с рисерчем. Если же вы целитесь именно в ресерч и хотите писать статьи и двигать нас к AGI, то вам после маги нужно будет еще и PhD (читай следующий пункт).

🔄Второй вариант. Поступаете сразу на профильное PhD - имхо, только заграницу. Тут, конечно, нужен бэкграунд посильнее, но зато не нужно думать о деньгах. Как правило PhD студент либо получает зарплату либо стипендию, которой достаточно чтобы покрывать расходы на жизнь и за обучение. Исключением будет только UK и USA, там с финансированием все плохо, Но даже там можно выживать за счет летних стажировок и подработок.

Поступать можно пробовать и без публикаций, чисто на энтузиазме и с крепких техническим бэкграундом. Но в топовые лабы, конечно, хорошо бы иметь проекты в AI.

После 3-5 лет PhD вы выйдете с публикациями и обширными связями в области. Можно будет с ноги врываться в индустриальные AI лабы на позиции вроде Research Scientist. Тут конечно нужно внести много поправок на качество ваших публикаций и отношения с научником, но я тут все же описываю благоприятный исход.

🔄Третий вариант (самостоятельный). Поднимать базу AI/ML самому по курсам и пет-проектам.

Тут нужно много самодисциплины, смотреть онлайн лекции из топовых универов, читать книги (моя подборка), неистово врываться на Kaggle, и пилить опенсорс на гитхабе. Research Scientist-ом по такому варианту не стать, но стать крепким практиком и попасть в FAANG и другие топовые AI фирмы и стартапы вполне реально. В одной из следующих частей этой рубрики я сделаю подборку материалов для самостоятельного изучения.

Конечно, есть ещё куча вариантов развития, я попытаюсь их раскрыть в следующих постах.

Пишите в комментах, что бы вы ещё хотели узнать.

#карьера
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2971
Create:
Last Update:

О карьерных траекториях в AI – часть 1

Мне часто пишут в личку, мол «не так много понимаю в AI, но очень интересно и хочется поглубже разобраться». Спрашивают куда пойти учиться и с чего начать.

Давайте я покажу пару примеров возможных карьерных траекторий.

Дано: студент технарь по физике/математике/программированию. Есть техническая база, но не шарю в ML и AI, и в моем универе этого не преподают.

Что делать?
🔄Первый вариант (самый прямолинейный). Ищете магистратуру, где есть ML и AI в программе. Лучше в Европе или в других развитых странах, где есть научные институты и лабы, публикующие работы в сфере AI. Так вы сможете получить наиболее актуальные знание от практикующих профессоров.

Цена вопроса: Например, в Германии и Франции в государственных университетах обучение стоит символических денег даже для иностранных студентов. В Heidelberg University, где я закончил PhD, учеба в маге для иностранца стоит 3000€/год, не включая расходы на жизнь. Причем всегда есть возможность еще и стипендию выбить. А если если бабки не вопрос, то возможностей еще больше.

Посла маги можно гордо крутить нейронки в продакшене или даже, если повезет, найти позицию Research Engineer (но их очень мало) и помогать сайнтистам с рисерчем. Если же вы целитесь именно в ресерч и хотите писать статьи и двигать нас к AGI, то вам после маги нужно будет еще и PhD (читай следующий пункт).

🔄Второй вариант. Поступаете сразу на профильное PhD - имхо, только заграницу. Тут, конечно, нужен бэкграунд посильнее, но зато не нужно думать о деньгах. Как правило PhD студент либо получает зарплату либо стипендию, которой достаточно чтобы покрывать расходы на жизнь и за обучение. Исключением будет только UK и USA, там с финансированием все плохо, Но даже там можно выживать за счет летних стажировок и подработок.

Поступать можно пробовать и без публикаций, чисто на энтузиазме и с крепких техническим бэкграундом. Но в топовые лабы, конечно, хорошо бы иметь проекты в AI.

После 3-5 лет PhD вы выйдете с публикациями и обширными связями в области. Можно будет с ноги врываться в индустриальные AI лабы на позиции вроде Research Scientist. Тут конечно нужно внести много поправок на качество ваших публикаций и отношения с научником, но я тут все же описываю благоприятный исход.

🔄Третий вариант (самостоятельный). Поднимать базу AI/ML самому по курсам и пет-проектам.

Тут нужно много самодисциплины, смотреть онлайн лекции из топовых универов, читать книги (моя подборка), неистово врываться на Kaggle, и пилить опенсорс на гитхабе. Research Scientist-ом по такому варианту не стать, но стать крепким практиком и попасть в FAANG и другие топовые AI фирмы и стартапы вполне реально. В одной из следующих частей этой рубрики я сделаю подборку материалов для самостоятельного изучения.

Конечно, есть ещё куча вариантов развития, я попытаюсь их раскрыть в следующих постах.

Пишите в комментах, что бы вы ещё хотели узнать.

#карьера
@ai_newz

BY эйай ньюз


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ai_newz/2971

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read."
from hk


Telegram эйай ньюз
FROM American