Telegram Group & Telegram Channel
✔️ LLM — персональные и мобильные

Владимир Малиновский из Yandex Research уменьшил размер Llama 3.1 8B с 8 млрд параметров в 6 раз с помощью комбинации методов AQLM и PV-tuning, отчего её стало возможно запустить в браузере и без GPU. При этом в модели размером всего 2,5 Гб удалось сохранить до 80% от исходного качества ответов, утверждает автор проекта.

После загрузки компактная версия Llama 3.1 8B работает без интернета, в том числе и на мобильных устройствах. А само сжатие стало возможным благодаря совместному исследованию Yandex Research вместе с коллегами из университетов IST Austria и KAUST. Ну и не обошлось без программистской магии, о деталях которой Малиновский рассказал в блоге на Хабре.

💻 Компактность и работа on-device становятся новым трендом в области LLM. В конце ноября MTS AI выпустила в паблик сразу несколько версий Cotype Nano с улучшенной оптимизацией под CPU и мобильные устройства. Модель уже тогда сравнивали с линейкой Llama.

Обычно большие языковые модели — штука прожорливая, особенно когда дело касается ресурсов GPU. Теперь же мы буквально наблюдаем бум компактных моделей и решений для их сжатия, которые всё чаще ориентируются на работу с маломощными системами. Ну и лучше подходят тем, у кого ограничены поставки решений от Nvidia, как в случае российских компаний.

✔️ И Cotype Nano, и сжатая Llama 3.1 8B отвечают на вопросы с задержкой в пару минут даже на обычном ноутбуке. Запустить на условном смартфоне их тоже можно, хотя производительность не на топовых моделях будет ощутимо хуже. Впрочем, тут ещё вопрос оптимизации: с нативными решениями таких проблем нет.

Инструменты Apple Intelligence на последних iPhone занимают всего около 4 Гб, но пересказывают сообщения и решают другие задачи без подвисаний. ИИ-сервисы Google работают на смартфонах Pixel, а сама компания призывает сторонних разработчиков также запускать свои разработки on-device.

🤖 Сжатие моделей добавило новую плоскость «гонке вооружений» ИИ. Новые функции это, конечно, хорошо. Но вычислительные ресурсы в мире не бесконечные. Кто-то, как OpenAI, активно сжигает деньги и пытается компенсировать это новыми продуктами.

Но, возможно, будущее лежит в более узких применениях ИИ. Зачем условному помощнику банкира знать, кто и когда выигрывал Олимпиаду? Пусть лучше такая LLM будет меньше, но заточена под конкретные задачи, чтобы запустить её можно было на рабочем ноутбуке менеджера по продажам.

🔤🔤Как показало недавнее исследование команды из Apple и Университета Нотр-Дам, у LLM можно найти «супер-веса», от которых особо сильные сигналы распространяются по всей сети модели. Достаточно удалить или изменить всего один параметр, как точность LLM снижается до уровня случайного угадывания.

В этом открытии есть и приятное «но». Удаление даже 7 тысяч других крупных весов может практически никак не повлиять на модель. То есть сжимать LLM можно в разы эффективнее и без потери качества, если знать, какие части можно буквально отбросить в сторону.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/antidigital/8661
Create:
Last Update:

✔️ LLM — персональные и мобильные

Владимир Малиновский из Yandex Research уменьшил размер Llama 3.1 8B с 8 млрд параметров в 6 раз с помощью комбинации методов AQLM и PV-tuning, отчего её стало возможно запустить в браузере и без GPU. При этом в модели размером всего 2,5 Гб удалось сохранить до 80% от исходного качества ответов, утверждает автор проекта.

После загрузки компактная версия Llama 3.1 8B работает без интернета, в том числе и на мобильных устройствах. А само сжатие стало возможным благодаря совместному исследованию Yandex Research вместе с коллегами из университетов IST Austria и KAUST. Ну и не обошлось без программистской магии, о деталях которой Малиновский рассказал в блоге на Хабре.

💻 Компактность и работа on-device становятся новым трендом в области LLM. В конце ноября MTS AI выпустила в паблик сразу несколько версий Cotype Nano с улучшенной оптимизацией под CPU и мобильные устройства. Модель уже тогда сравнивали с линейкой Llama.

Обычно большие языковые модели — штука прожорливая, особенно когда дело касается ресурсов GPU. Теперь же мы буквально наблюдаем бум компактных моделей и решений для их сжатия, которые всё чаще ориентируются на работу с маломощными системами. Ну и лучше подходят тем, у кого ограничены поставки решений от Nvidia, как в случае российских компаний.

✔️ И Cotype Nano, и сжатая Llama 3.1 8B отвечают на вопросы с задержкой в пару минут даже на обычном ноутбуке. Запустить на условном смартфоне их тоже можно, хотя производительность не на топовых моделях будет ощутимо хуже. Впрочем, тут ещё вопрос оптимизации: с нативными решениями таких проблем нет.

Инструменты Apple Intelligence на последних iPhone занимают всего около 4 Гб, но пересказывают сообщения и решают другие задачи без подвисаний. ИИ-сервисы Google работают на смартфонах Pixel, а сама компания призывает сторонних разработчиков также запускать свои разработки on-device.

🤖 Сжатие моделей добавило новую плоскость «гонке вооружений» ИИ. Новые функции это, конечно, хорошо. Но вычислительные ресурсы в мире не бесконечные. Кто-то, как OpenAI, активно сжигает деньги и пытается компенсировать это новыми продуктами.

Но, возможно, будущее лежит в более узких применениях ИИ. Зачем условному помощнику банкира знать, кто и когда выигрывал Олимпиаду? Пусть лучше такая LLM будет меньше, но заточена под конкретные задачи, чтобы запустить её можно было на рабочем ноутбуке менеджера по продажам.

🔤🔤Как показало недавнее исследование команды из Apple и Университета Нотр-Дам, у LLM можно найти «супер-веса», от которых особо сильные сигналы распространяются по всей сети модели. Достаточно удалить или изменить всего один параметр, как точность LLM снижается до уровня случайного угадывания.

В этом открытии есть и приятное «но». Удаление даже 7 тысяч других крупных весов может практически никак не повлиять на модель. То есть сжимать LLM можно в разы эффективнее и без потери качества, если знать, какие части можно буквально отбросить в сторону.

BY Нецифровая экономика




Share with your friend now:
group-telegram.com/antidigital/8661

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” Founder Pavel Durov says tech is meant to set you free The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones.
from hk


Telegram Нецифровая экономика
FROM American