Telegram Group & Telegram Channel
Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/79
Create:
Last Update:

Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab

BY Gentech Lab




Share with your friend now:
group-telegram.com/gentech_lab/79

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Anastasia Vlasova/Getty Images Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from hk


Telegram Gentech Lab
FROM American