Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/857 -
Telegram Group & Telegram Channel
Long Expressive Memory for Sequence Modeling
T. Konstantin Rusch, Siddhartha Mishra, N. Benjamin Erichson, Michael W. Mahoney
Статья: https://arxiv.org/abs/2110.04744
Код: https://github.com/tk-rusch/LEM

Нельзя было пройти мимо модели под названием LEM.

Мы старались писать про многое за пределами трансформеров — и про свёрточные, и про возвращение старых добрых MLP, но что-то давно не писали про рекуррентные сети. А там жизнь тоже идёт ого-го!

Может показаться, что трансформеры вытеснили рекуррентные сети отовсюду, где надо было работать с последовательностями. Но ощущение это ложное. Если посмотреть на некоторые бенчмарки про работу с последовательностями на PapersWithCode, то в топе там либо разные варианты рекуррентных сетей (посимвольное языковое моделирование на Penn Treebank или PoS-тэггинг там же, https://paperswithcode.com/sota/language-modelling-on-penn-treebank-character и https://paperswithcode.com/sota/part-of-speech-tagging-on-penn-treebank), либо варианты хитрых свёрток или гибриды с ними (различные варианты time-series бенчмарков https://paperswithcode.com/task/time-series-classification или sequential mnist https://paperswithcode.com/sota/sequential-image-classification-on-sequential).

Рекуррентные сети для многих по привычке заканчиваются на LSTM/GRU, но кроме этих уже довольно старых моделей за прошедшие годы в области случилось много чего. Может у кого-то на слуху AWD-LSTM или Mogrifier, но это всё равно далеко не полная картина, новые модели появляются каждый год. LEM (Long Expressive Memory) одна из таких моделей, появившаяся в конце 2021 года.

Традиционно считается, что существенная часть проблем при обучении рекуррентных сетей происходит из-за затухающих/взрывающихся градиентов. Собственно, LSTM и GRU были сделаны для борьбы с этим, там за счёт системы гейтов модель учится управлять градиентами так, чтобы они не терялись. Другой подход в этому же снаряду заключается в добавлении специальных ограничений на структуру весов скрытого слоя, например, чтобы матрицы весов были ортогональными или унитарными. Сюда относятся, например, uRNN (https://arxiv.org/abs/1511.06464) или nnRNN (https://arxiv.org/abs/1905.12080). Ещё один подход регулирует веса или структуру, чтобы градиенты оставались вменяемыми. Так поступают в IndRNN (https://arxiv.org/abs/1803.04831) или в более хитрой гарантирующей ограниченность градиентов coRNN (https://arxiv.org/abs/2010.00951) от тех же авторов, что и LEM. Главное, чего хочется добиться кроме отсутствия проблем с обучением, это сохранить выразительность сети и способность выучивать сложные функции.

Авторы отталкиваются от наблюдения, что реалистичные последовательности данных содержат информацию на разных масштабах (например, временных), и соответственно нужна модель способная работать на этих нескольких масштабах (multiscale model).

Начинают рассмотрение с системы из двух обыкновенных дифференциальных уравнений (ODE) с двумя разными масштабами времени (условно, медленный и быстрый). У модели соответственно есть быстрая и медленная переменные y(t) и z(t) и входной сигнал u(t). Размерности всех переменных для простоты одинаковы. Есть и матрицы весов W_y, W_z, V_y, V_z, задающие взаимодействие между нейронами.

Двух масштабов может быть недостаточно для реальных данных, поэтому авторы обобщают систему уравнений до мультимасштабной версии, где константы масштабов заменяются на обучаемые функции похожего на функции исходной системы вида (только с нелинейностью в виде сигмоиды вместо гиперболического тангенса), которые далее поэлементно перемножаются с оригинальными уравнениями. Получаются обучаемые масштабы, которые ещё и адаптивно подстраиваются под данные.

Как бонус эта мультимасштабная система получается той же формы, что и старая добрая модель Ходжкина-Хаксли.



group-telegram.com/gonzo_ML/857
Create:
Last Update:

Long Expressive Memory for Sequence Modeling
T. Konstantin Rusch, Siddhartha Mishra, N. Benjamin Erichson, Michael W. Mahoney
Статья: https://arxiv.org/abs/2110.04744
Код: https://github.com/tk-rusch/LEM

Нельзя было пройти мимо модели под названием LEM.

Мы старались писать про многое за пределами трансформеров — и про свёрточные, и про возвращение старых добрых MLP, но что-то давно не писали про рекуррентные сети. А там жизнь тоже идёт ого-го!

Может показаться, что трансформеры вытеснили рекуррентные сети отовсюду, где надо было работать с последовательностями. Но ощущение это ложное. Если посмотреть на некоторые бенчмарки про работу с последовательностями на PapersWithCode, то в топе там либо разные варианты рекуррентных сетей (посимвольное языковое моделирование на Penn Treebank или PoS-тэггинг там же, https://paperswithcode.com/sota/language-modelling-on-penn-treebank-character и https://paperswithcode.com/sota/part-of-speech-tagging-on-penn-treebank), либо варианты хитрых свёрток или гибриды с ними (различные варианты time-series бенчмарков https://paperswithcode.com/task/time-series-classification или sequential mnist https://paperswithcode.com/sota/sequential-image-classification-on-sequential).

Рекуррентные сети для многих по привычке заканчиваются на LSTM/GRU, но кроме этих уже довольно старых моделей за прошедшие годы в области случилось много чего. Может у кого-то на слуху AWD-LSTM или Mogrifier, но это всё равно далеко не полная картина, новые модели появляются каждый год. LEM (Long Expressive Memory) одна из таких моделей, появившаяся в конце 2021 года.

Традиционно считается, что существенная часть проблем при обучении рекуррентных сетей происходит из-за затухающих/взрывающихся градиентов. Собственно, LSTM и GRU были сделаны для борьбы с этим, там за счёт системы гейтов модель учится управлять градиентами так, чтобы они не терялись. Другой подход в этому же снаряду заключается в добавлении специальных ограничений на структуру весов скрытого слоя, например, чтобы матрицы весов были ортогональными или унитарными. Сюда относятся, например, uRNN (https://arxiv.org/abs/1511.06464) или nnRNN (https://arxiv.org/abs/1905.12080). Ещё один подход регулирует веса или структуру, чтобы градиенты оставались вменяемыми. Так поступают в IndRNN (https://arxiv.org/abs/1803.04831) или в более хитрой гарантирующей ограниченность градиентов coRNN (https://arxiv.org/abs/2010.00951) от тех же авторов, что и LEM. Главное, чего хочется добиться кроме отсутствия проблем с обучением, это сохранить выразительность сети и способность выучивать сложные функции.

Авторы отталкиваются от наблюдения, что реалистичные последовательности данных содержат информацию на разных масштабах (например, временных), и соответственно нужна модель способная работать на этих нескольких масштабах (multiscale model).

Начинают рассмотрение с системы из двух обыкновенных дифференциальных уравнений (ODE) с двумя разными масштабами времени (условно, медленный и быстрый). У модели соответственно есть быстрая и медленная переменные y(t) и z(t) и входной сигнал u(t). Размерности всех переменных для простоты одинаковы. Есть и матрицы весов W_y, W_z, V_y, V_z, задающие взаимодействие между нейронами.

Двух масштабов может быть недостаточно для реальных данных, поэтому авторы обобщают систему уравнений до мультимасштабной версии, где константы масштабов заменяются на обучаемые функции похожего на функции исходной системы вида (только с нелинейностью в виде сигмоиды вместо гиперболического тангенса), которые далее поэлементно перемножаются с оригинальными уравнениями. Получаются обучаемые масштабы, которые ещё и адаптивно подстраиваются под данные.

Как бонус эта мультимасштабная система получается той же формы, что и старая добрая модель Ходжкина-Хаксли.

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/857

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

I want a secure messaging app, should I use Telegram? Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from hk


Telegram gonzo-обзоры ML статей
FROM American