Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gostrateg8/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Го и стратегия | Telegram Webview: gostrateg8/744 -
Telegram Group & Telegram Channel
В октябре группа исследователей из Apple опубликовала статью с вопросом: способны ли языковые модели (LLM) рассуждать. Они лежат в основе работы Chat-GPT и многих других инноваций в сфере ИИ. Для проверки взяли математический тест начальной школы (GSM8K). Цитата из статьи:

«Математическое мышление – важнейший когнитивный навык, который помогает решать проблемы в многочисленных научных и практических областях. Следовательно, способность больших языковых моделей (LLM) эффективно выполнять задачи математического мышления является ключом к развитию искусственного интеллекта и его применения в реальном мире».

Существующие модели неплохо справляются с базовым тестом, показывая результаты выше 80% верных ответов. Исследователи решили выяснить – является ли это результатом понимания задач теста?

Для начала в заданиях заменили имена и названия предметов, а также поменяли цифры. Условная Софи стала Анной, груши – персиками, а 3 штуки за 2 доллара превратились в 5 штук за 80 центов. Выяснилось, что замена имен не так критична, как изменение значений, однако точность ответов на измененные задачи теста начала падать.

Тогда исследователи усложнили задачи, добавив к условию новые параметры. Например, ввели в задачу на расчет стоимости звонка по телефону дополнительные скидки с определенной минуты разговора и скидку при достижении порога стоимости в 10 долларов. А на третьем шаге в задачи добавили не относящиеся к делу обстоятельства, запутывающие задачу.

Например, фермер Оливер собрал 44 киви в пятницу. Затем он собрал 58 киви в субботу. А в воскресение он собрал вдвое больше киви, чем в пятницу, но пять из них было немного меньше, чем в среднем. Сколько всего собрал киви Оливер?

Выяснилось, что лишняя информация про размер пяти киви сбивала с толку. В статье приводятся примеры рассуждений o1-mini и Llama3-8B, которые предлагают вычесть 5 киви из общего числа собранных в воскресение, «так как они меньше, чем в среднем». Падение точности решения тестов в этом случае стало драматическим. Например у GPT-4o результаты на 40% хуже по сравнению со стандартным тестом.

Лет 10 назад я составил тесты из задач для проверки уровней начальных кю для студентов. Проверять игровой уровень на задачах бессмысленно, но тестировать как-то надо, поэтому придумывал тесты с небольшой заковыкой, чтобы в них нужно было немного подумать. Редко кому удавалось пройти тесты с первого раза. Основные ошибки: невнимательность, что понятно; затем обобщение, когда человек сам подменил в голове суть вопроса; отвечающий сбился так как отвлекся на второстепенный фактор.

Послушав про результаты исследования, задался вопросом, а часто ли мы сами думаем? И сколько людей прошли бы такой тест от разработчиков?

Ссылка на разбор статьи: https://www.youtube.com/watch?v=tTG_a0KPJAc



group-telegram.com/gostrateg8/744
Create:
Last Update:

В октябре группа исследователей из Apple опубликовала статью с вопросом: способны ли языковые модели (LLM) рассуждать. Они лежат в основе работы Chat-GPT и многих других инноваций в сфере ИИ. Для проверки взяли математический тест начальной школы (GSM8K). Цитата из статьи:

«Математическое мышление – важнейший когнитивный навык, который помогает решать проблемы в многочисленных научных и практических областях. Следовательно, способность больших языковых моделей (LLM) эффективно выполнять задачи математического мышления является ключом к развитию искусственного интеллекта и его применения в реальном мире».

Существующие модели неплохо справляются с базовым тестом, показывая результаты выше 80% верных ответов. Исследователи решили выяснить – является ли это результатом понимания задач теста?

Для начала в заданиях заменили имена и названия предметов, а также поменяли цифры. Условная Софи стала Анной, груши – персиками, а 3 штуки за 2 доллара превратились в 5 штук за 80 центов. Выяснилось, что замена имен не так критична, как изменение значений, однако точность ответов на измененные задачи теста начала падать.

Тогда исследователи усложнили задачи, добавив к условию новые параметры. Например, ввели в задачу на расчет стоимости звонка по телефону дополнительные скидки с определенной минуты разговора и скидку при достижении порога стоимости в 10 долларов. А на третьем шаге в задачи добавили не относящиеся к делу обстоятельства, запутывающие задачу.

Например, фермер Оливер собрал 44 киви в пятницу. Затем он собрал 58 киви в субботу. А в воскресение он собрал вдвое больше киви, чем в пятницу, но пять из них было немного меньше, чем в среднем. Сколько всего собрал киви Оливер?

Выяснилось, что лишняя информация про размер пяти киви сбивала с толку. В статье приводятся примеры рассуждений o1-mini и Llama3-8B, которые предлагают вычесть 5 киви из общего числа собранных в воскресение, «так как они меньше, чем в среднем». Падение точности решения тестов в этом случае стало драматическим. Например у GPT-4o результаты на 40% хуже по сравнению со стандартным тестом.

Лет 10 назад я составил тесты из задач для проверки уровней начальных кю для студентов. Проверять игровой уровень на задачах бессмысленно, но тестировать как-то надо, поэтому придумывал тесты с небольшой заковыкой, чтобы в них нужно было немного подумать. Редко кому удавалось пройти тесты с первого раза. Основные ошибки: невнимательность, что понятно; затем обобщение, когда человек сам подменил в голове суть вопроса; отвечающий сбился так как отвлекся на второстепенный фактор.

Послушав про результаты исследования, задался вопросом, а часто ли мы сами думаем? И сколько людей прошли бы такой тест от разработчиков?

Ссылка на разбор статьи: https://www.youtube.com/watch?v=tTG_a0KPJAc

BY Го и стратегия




Share with your friend now:
group-telegram.com/gostrateg8/744

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. False news often spreads via public groups, or chats, with potentially fatal effects. Founder Pavel Durov says tech is meant to set you free Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge.
from hk


Telegram Го и стратегия
FROM American