Telegram Group & Telegram Channel
Цифровой геноцид ревью: Что нового в UX? Гонзо-новости UX и HCI статей в январе

Bridging HCI and AI Research for the Evaluation of Conversational SE Assistants
https://arxiv.org/html/2502.07956v1

Поскольку большие языковые модели (LLM) все чаще применяются в программной инженерии, в последнее время в форме разговорных помощников, обеспечение соответствия этих технологий потребностям разработчиков имеет важное значение. Ограничения традиционных методов оценки инструментов на основе LLM, ориентированных на человека, в масштабе повышают потребность в автоматической оценке.

Исследования пользователей являются дорогостоящими, трудоемкими и сложными для масштабирования. Инструменты разработки на основе LLM, и в частности разговорные помощники, страдают от отсутствия надежных методов оценки . LLM очень чувствительны к формулировке своих промтов или инструкций, и проектирование инструмента на основе LLM требует много «инженерии промтов” для достижения желаемой функциональности

Высокая стоимость исследований пользователей привела к появлению альтернативного метода оценки в области HCI: В подходах LLM-as-a-Judge LLM используется в качестве «судьи», заменяя реальных людей для автоматической оценки текстов, сгенерированных LLM. LLM-as-a-Judge все чаще используется практиками для оценки инструментов на основе LLM, специфичных для предметной области, и может быть полезен также в различных задачах разработки.

В общем-то в статье обсуждаются искусственные пользователи на основе нейронок и предлагается сравнить с методом LLM-as-a-Judge. Предполагается даже объединение этих двух методов
Недавно исследователи изучали использование LLM для имитации людей и генерации синтетических исследовательских данных. Хямяляйнен и др. обнаружили, что GPT-3 способен производить реалистичные качественные данные, существенно перекрывающиеся с данными, генерируемыми людьми, и даже дающие дополнительные идеи. Имитированные LLM-взаимодействия пользователей оказались реалистичными и полезными для оценки эффектов выбора дизайна во время прототипирования платформ социальных сетей. Сян и др. использовали LLM для имитации взаимодействия пользователя с интерфейсом и обнаружили, что это полезно для выявления пограничных случаев, генерируя значительное количество отзывов об удобстве использования, не идентифицированных пользователями-людьми. Эти исследования показывают, что имитированные пользователи могут быть использованы для качественной аналитики (R4), как позволяя дизайнерам проверять взаимодействия, так и напрямую генерируя обратную связь. ….При использовании имитированных пользователей с широким спектром персон дизайнеры могут поддерживать разнообразие, выявляя ошибки инклюзивности [30] (R2). Искусственные пользователи используются для оценок таких же искусственных рабочих ответов ЛЛМ в виде копилотов или прототипов интерфейсов. Кроме того, это дает хорошие возможности для инклюзии (Еще раз - это про взаимодействие с рабочими ассистентами и агентами на ИИ, не коммерческие исследования пользователей - прим. мое)

Но пока не ясно удастся ли получать количественные данные таким образом и есть ограничения этого метода

Чжэн и др. ввели термин «LLM-as-a-Judge», ссылаясь на подходы, в которых LLM используются в качестве «судей» для оценки текстов, созданных LLM. Эти подходы существуют в нескольких формах, включая оценку одного результата LLM или выбор лучшего из пары результатов . Эти суждения могут быть сделаны на основе набора критериев, что означает, что LLM-as-a-Judge может быть использован для предоставления широкого спектра количественных показателей (R3). Оценка, предоставляемая подходами LLM-as-a-Judge, часто хорошо согласуется с человеческими суждениями, в том числе для различных задач SE . В дополнение к их высокой масштабируемости и низкой стоимости по сравнению с человеческой оценкой, это привело к тому, что LLM-as-a-Judge все чаще используется на практике для оценки инструментов на основе LLM .

Кроме того, судьям LLM может быть поручено предоставить объяснение своей оценки



group-telegram.com/gulagdigital/3151
Create:
Last Update:

Цифровой геноцид ревью: Что нового в UX? Гонзо-новости UX и HCI статей в январе

Bridging HCI and AI Research for the Evaluation of Conversational SE Assistants
https://arxiv.org/html/2502.07956v1

Поскольку большие языковые модели (LLM) все чаще применяются в программной инженерии, в последнее время в форме разговорных помощников, обеспечение соответствия этих технологий потребностям разработчиков имеет важное значение. Ограничения традиционных методов оценки инструментов на основе LLM, ориентированных на человека, в масштабе повышают потребность в автоматической оценке.

Исследования пользователей являются дорогостоящими, трудоемкими и сложными для масштабирования. Инструменты разработки на основе LLM, и в частности разговорные помощники, страдают от отсутствия надежных методов оценки . LLM очень чувствительны к формулировке своих промтов или инструкций, и проектирование инструмента на основе LLM требует много «инженерии промтов” для достижения желаемой функциональности

Высокая стоимость исследований пользователей привела к появлению альтернативного метода оценки в области HCI: В подходах LLM-as-a-Judge LLM используется в качестве «судьи», заменяя реальных людей для автоматической оценки текстов, сгенерированных LLM. LLM-as-a-Judge все чаще используется практиками для оценки инструментов на основе LLM, специфичных для предметной области, и может быть полезен также в различных задачах разработки.

В общем-то в статье обсуждаются искусственные пользователи на основе нейронок и предлагается сравнить с методом LLM-as-a-Judge. Предполагается даже объединение этих двух методов
Недавно исследователи изучали использование LLM для имитации людей и генерации синтетических исследовательских данных. Хямяляйнен и др. обнаружили, что GPT-3 способен производить реалистичные качественные данные, существенно перекрывающиеся с данными, генерируемыми людьми, и даже дающие дополнительные идеи. Имитированные LLM-взаимодействия пользователей оказались реалистичными и полезными для оценки эффектов выбора дизайна во время прототипирования платформ социальных сетей. Сян и др. использовали LLM для имитации взаимодействия пользователя с интерфейсом и обнаружили, что это полезно для выявления пограничных случаев, генерируя значительное количество отзывов об удобстве использования, не идентифицированных пользователями-людьми. Эти исследования показывают, что имитированные пользователи могут быть использованы для качественной аналитики (R4), как позволяя дизайнерам проверять взаимодействия, так и напрямую генерируя обратную связь. ….При использовании имитированных пользователей с широким спектром персон дизайнеры могут поддерживать разнообразие, выявляя ошибки инклюзивности [30] (R2). Искусственные пользователи используются для оценок таких же искусственных рабочих ответов ЛЛМ в виде копилотов или прототипов интерфейсов. Кроме того, это дает хорошие возможности для инклюзии (Еще раз - это про взаимодействие с рабочими ассистентами и агентами на ИИ, не коммерческие исследования пользователей - прим. мое)

Но пока не ясно удастся ли получать количественные данные таким образом и есть ограничения этого метода

Чжэн и др. ввели термин «LLM-as-a-Judge», ссылаясь на подходы, в которых LLM используются в качестве «судей» для оценки текстов, созданных LLM. Эти подходы существуют в нескольких формах, включая оценку одного результата LLM или выбор лучшего из пары результатов . Эти суждения могут быть сделаны на основе набора критериев, что означает, что LLM-as-a-Judge может быть использован для предоставления широкого спектра количественных показателей (R3). Оценка, предоставляемая подходами LLM-as-a-Judge, часто хорошо согласуется с человеческими суждениями, в том числе для различных задач SE . В дополнение к их высокой масштабируемости и низкой стоимости по сравнению с человеческой оценкой, это привело к тому, что LLM-as-a-Judge все чаще используется на практике для оценки инструментов на основе LLM .

Кроме того, судьям LLM может быть поручено предоставить объяснение своей оценки

BY Цифровой геноцид


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gulagdigital/3151

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Anastasia Vlasova/Getty Images "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice.
from hk


Telegram Цифровой геноцид
FROM American