Telegram Group & Telegram Channel
О научном семинаре.

После долгих каникул и месяца вхождения в нормальный рабочий ритм возвращаемся к долгожданной работе нашего научного семинара.

1 октября в 13:30 в конференцзале ИХР РАН в гибридном формате пройдёт двадцать первое заседание семинара "Теория и моделирование молекулярных систем". С докладом "Потенциалы глубокого машинного обучения для атомистического моделирования металлургических расплавов" выступит заведующий лабораторией неупорядоченных систем Института металлургии Уральского отделения Российской академии наук (Екатеринбург), д. ф-м. н. Рыльцев Роман
Евгеньевич. Желающие поучаствавать в семинаре онлайн/офлайн должны зарегистрироваться по ссылке ниже. По всем вопросам обращаться к секретарю семинара Одинцовой Екатерине Геннадьевне по адресу [email protected].

Семинар проводится научно-исследовательским отделом №6 ИХР РАН в рамках работы Центра генеративного дизайна кампуса БИМ.

Аннотация.

В последние годы в вычислительном материаловедении наблюдается революционный прогресс, связанный с использованием методов машинного обучения для создания потенциалов межатомного взаимодействия (MLIPs – Machine Learning Interatomic Potentials). Основная идея такого подхода – аппроксимировать поверхность потенциальной энергии системы с помощью многочастичных функций общего вида (например, нейронных сетей) используя эталонные значения энергий и сил, полученные в ab initio расчетах. Атомистическое моделирование с MLIPs позволяет достигнуть ab initio точности при на порядки меньших вычислительных затратах [1]. 

Актуальным приложением MLIPs является моделирование металлургических расплавов, поскольку экспериментальное изучение их свойств часто затруднительно. В цикле наших недавних работ показано, что MLIPs на основе нейронных сетей обеспечивают достаточную точность и вычислительную эффективность для расчета широкого спектра наблюдаемых свойств расплавов, таких как структурные характеристики, плотность, энтальпии смешения, температуры фазовых превращений, вязкость и коэффициенты диффузии [2-8]. 

Вместе с тем, были выявлены проблемы, решение которых является вызовом для вычислительного материаловедения. Одной их них является недостаточная точность стандартных ab initio методов, основанных на теории функционала плотности, для описания некоторых систем [6,8,9]. Другая проблема состоит в том, что создание MLIPs – это трудоемкий процесс, который может занимать недели и требовать значительных вычислительных ресурсов.

Одним из способов решения указанных проблем является трансферное обучение (TL – Transfer Learning). TL – это повторное использование предварительно обученной модели для решения новой задачи. Одной из стратегий TL является дообучение MLIP с помощью нового набора данных. Поскольку при таком подходе обновляется только часть параметров нейросети (как правило, соответствующих одному-двум внешним слоям), то размер нового набора данных может быть на порядки меньше по сравнению с размером исходного набора, использованного для обучения исходной модели. Это, в частности, позволяет использовать для создания нового набора более точные ab initio приближения. Другой перспективный способ использования TL – дообучение «универсальных» MLIP, содержащих информацию о взаимодействии десятков химических элементов, и обученных на основе больших баз данных, содержащих результаты первопринципных расчетов десятков тысяч химических соединений и структур, таких как Materials Project [10, 11].

Список литературы

1. Y. Mishin, Acta Mater, 214, p. 116980 (2021).

2. R.E. Ryltsev, N.M. Chtchelkatchev, J. Mol. Liq. 349, p. 118181 (2022). 

3. N. Kondratyuk, R. Ryltsev, V. Ankudinov, N. Chtchelkatchev, J. Mol. Liq. 380, p. 121751 (2023).

4. A.O. Tipeev, R.E. Ryltsev, N.M. Chtchelkatchev, S. Ramprakash, E.D. Zanotto, J. Mol. Liq. 387, p. 122606 (2023). 

5. И. А. Балякин, Р.Е. Рыльцев, Н.М. Щелкачев. Письма в ЖЭТФ. 117, сс. 377-384 (2023).

6. N.M. Chtchelkatchev, R.E. Ryltsev, M.V. Magnitskaya, S.M. Gorbunov, K.A. Cherednichenko, V.L. Solozhenko, V.V. Brazhkin, J. Chem. Phys. 159, p. 064507 (2023).

7. I.A. Balyakin, S.V. Rempel, R.E.



group-telegram.com/isc_ras/1380
Create:
Last Update:

О научном семинаре.

После долгих каникул и месяца вхождения в нормальный рабочий ритм возвращаемся к долгожданной работе нашего научного семинара.

1 октября в 13:30 в конференцзале ИХР РАН в гибридном формате пройдёт двадцать первое заседание семинара "Теория и моделирование молекулярных систем". С докладом "Потенциалы глубокого машинного обучения для атомистического моделирования металлургических расплавов" выступит заведующий лабораторией неупорядоченных систем Института металлургии Уральского отделения Российской академии наук (Екатеринбург), д. ф-м. н. Рыльцев Роман
Евгеньевич. Желающие поучаствавать в семинаре онлайн/офлайн должны зарегистрироваться по ссылке ниже. По всем вопросам обращаться к секретарю семинара Одинцовой Екатерине Геннадьевне по адресу [email protected].

Семинар проводится научно-исследовательским отделом №6 ИХР РАН в рамках работы Центра генеративного дизайна кампуса БИМ.

Аннотация.

В последние годы в вычислительном материаловедении наблюдается революционный прогресс, связанный с использованием методов машинного обучения для создания потенциалов межатомного взаимодействия (MLIPs – Machine Learning Interatomic Potentials). Основная идея такого подхода – аппроксимировать поверхность потенциальной энергии системы с помощью многочастичных функций общего вида (например, нейронных сетей) используя эталонные значения энергий и сил, полученные в ab initio расчетах. Атомистическое моделирование с MLIPs позволяет достигнуть ab initio точности при на порядки меньших вычислительных затратах [1]. 

Актуальным приложением MLIPs является моделирование металлургических расплавов, поскольку экспериментальное изучение их свойств часто затруднительно. В цикле наших недавних работ показано, что MLIPs на основе нейронных сетей обеспечивают достаточную точность и вычислительную эффективность для расчета широкого спектра наблюдаемых свойств расплавов, таких как структурные характеристики, плотность, энтальпии смешения, температуры фазовых превращений, вязкость и коэффициенты диффузии [2-8]. 

Вместе с тем, были выявлены проблемы, решение которых является вызовом для вычислительного материаловедения. Одной их них является недостаточная точность стандартных ab initio методов, основанных на теории функционала плотности, для описания некоторых систем [6,8,9]. Другая проблема состоит в том, что создание MLIPs – это трудоемкий процесс, который может занимать недели и требовать значительных вычислительных ресурсов.

Одним из способов решения указанных проблем является трансферное обучение (TL – Transfer Learning). TL – это повторное использование предварительно обученной модели для решения новой задачи. Одной из стратегий TL является дообучение MLIP с помощью нового набора данных. Поскольку при таком подходе обновляется только часть параметров нейросети (как правило, соответствующих одному-двум внешним слоям), то размер нового набора данных может быть на порядки меньше по сравнению с размером исходного набора, использованного для обучения исходной модели. Это, в частности, позволяет использовать для создания нового набора более точные ab initio приближения. Другой перспективный способ использования TL – дообучение «универсальных» MLIP, содержащих информацию о взаимодействии десятков химических элементов, и обученных на основе больших баз данных, содержащих результаты первопринципных расчетов десятков тысяч химических соединений и структур, таких как Materials Project [10, 11].

Список литературы

1. Y. Mishin, Acta Mater, 214, p. 116980 (2021).

2. R.E. Ryltsev, N.M. Chtchelkatchev, J. Mol. Liq. 349, p. 118181 (2022). 

3. N. Kondratyuk, R. Ryltsev, V. Ankudinov, N. Chtchelkatchev, J. Mol. Liq. 380, p. 121751 (2023).

4. A.O. Tipeev, R.E. Ryltsev, N.M. Chtchelkatchev, S. Ramprakash, E.D. Zanotto, J. Mol. Liq. 387, p. 122606 (2023). 

5. И. А. Балякин, Р.Е. Рыльцев, Н.М. Щелкачев. Письма в ЖЭТФ. 117, сс. 377-384 (2023).

6. N.M. Chtchelkatchev, R.E. Ryltsev, M.V. Magnitskaya, S.M. Gorbunov, K.A. Cherednichenko, V.L. Solozhenko, V.V. Brazhkin, J. Chem. Phys. 159, p. 064507 (2023).

7. I.A. Balyakin, S.V. Rempel, R.E.

BY ИХР РАН / ISC RAS




Share with your friend now:
group-telegram.com/isc_ras/1380

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from hk


Telegram ИХР РАН / ISC RAS
FROM American