Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/kusaka_daily/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Дневник Бродского | Telegram Webview: kusaka_daily/226 -
Telegram Group & Telegram Channel
Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!



group-telegram.com/kusaka_daily/226
Create:
Last Update:

Мне вчера рассказали очень крутое, а главное, естественное доказательство квадратичного закона взаимности Гаусса. Видимо, оно является переведенным на язык теории Галуа стандартным рассуждением с рассмотрением сумм экспонент. Наверное, это рассуждение будет не очень понятно школьникам, так для его осознания надо немного шарить за кольца целых и достаточно базовую теорию Галуа.

Начну с формулировки. Пусть у вас имеется некоторое простое число p. Тогда ненулевые остатки по модулю p бывают двух видов: a называется квадратичным вычетом, если a = x^2 для некоторого другого остатка x. В противном случае a называется квадратичным невычетом. В первом случае будем писать (a | p) = 1, во втором (a | p) = -1. Так вот квадратичный закон взаимности утверждает, что для двух простых чисел p и q больших 2 выполняется следующее тождество: (p | q) * (q | p) = (-1)^(p-1/ 2) * (q-1 / 2)

У этого утверждения существует множества доказательств, в том числе и совсем элементарные, не требующие даже знаний комплексных чисел. Однако расплата за элементарность, как это обычно и бывает, это крайне вычурные рассуждения, которые очень сложно придумать. Я же хочу дать набросок короткого и понятного рассуждения, которое опирается на несовсем элементарный аппарат.

Итак, начнем с того, что рассмотрим eps — комплексный корень степени p из 1. У Q(eps) (оно же поле разложения многочлена x^p - 1 / x - 1) есть единственное квадратичное подрасширение Q(\sqrt(D) ) при некотором целом D, так как в группа Галуа Q(eps) это (Z/pZ)^* имеет единственную подгруппу индекса 2. Очень хорошо, давайте теперь изучим кольца целых двух полученных полей. O(eps) это Z[eps], а O(\sqrt(D)) это либо Z[\sqrt(D)] либо Z[( 1 + \sqrt(D) ) / 2].

Теперь заведем второе простое число q. Идея заключается в том, чтобы посмотреть на простые идеалы, которые весят над q в интересующих нас кольцах целых. Их изучение немедленно приведет к квадратичному закону. Заметим, что q не ветвится в Z[eps] так как q по тривиальным причинам не делит disk(x^p - 1 / x - 1). Это заодно означает, что q не ветвится и в Z[sqrt(D)]. Кажется, дискриминант Z[ 1 + sqrt(D) / 2] это 2D или 4D (точно не помню), но так или иначе так как q больше 2 и не делит D, то и эту шутку оно не делит. Получаем, что q в любом случае неразветвленно в каждом из наших колец целых.

Пусть I и I* это простые идеалы, висящие над q в Z[eps] и втором кольце соответственно. Теорема Дедекинда нам сообщает, что в Gal(Q(eps)) можно найти такой элемент S, что S(x) сравнимо с x^q по модулю I для любого x из Z[eps], и аналогичный S* можно найти в Gal(Q(sqrt(D)). Далее у нас имеется сюрьектинвный гомоморфизм их Gal(Q(eps)) = (Z / pZ)^* в Gal(Q(\sqrt(D)) = {-1, 1} (по умножению): четные степени первообразного корня он переводит в 1, а нечетные в -1, то есть этот гомоморфизм это просто (x | p). Если теперь написать, что S переходит в S*, то в точности получится квадратичный закон!

BY Дневник Бродского


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/kusaka_daily/226

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations.
from hk


Telegram Дневник Бродского
FROM American