Telegram Group & Telegram Channel
Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)



group-telegram.com/olympgeom/1573
Create:
Last Update:

Как показывают ответы выше, вопрос не такой уж и интуитивно понятный. На самом деле, если пытаться не просто угадать, а доказать соответствующий факт, то задача становится еще запутаннее.

Я знаю общий ответ в n-мерном пространстве и доказательство, в котором первый шаг... это преобразование Фурье характеристической функции куба. Правда, не выглядит тривиально?

Тем не менее, если ответ получен, то вместе с ним получается и ответ на такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь меньше, чем сечение L той же гиперплоскостью. Верно ли, что тогда объем K меньше объема L?

Ответ оказывается отрицательным и контрпримером в размерностях больше 10 (не помню точно) служат куб и шар. А все потому, что можно явно указать сечение наибольшей площади у куба и посчитать ее.

Естественным продолжением служит такой вопрос.

Вопрос. Предположим в R^n даны два выпуклых центрально-симметриченых тела K и L с центром симметрии в начале координат. Оказалось, что любое центральное (n-1)-мерное сечение K имеет площадь как минимум в C раз меньше, чем сечение L той же гиперплоскостью. Верно ли, что существует такая универсальная константа C (не зависящая от размерности), которая гарантирует, что объем K меньше объема L?

Этот вопрос оставался открытым около 40 лет. И позавчера опубликовали препринт, подтверждающий, что это утверждение верно!

Что интересно, у этой гипотезы (теперь уже теоремы) есть множество абсолютно разнородных и нетривиальных переформулировок. Помню я даже как-то делал доклад в лаборатории Ч и рассказывал про это.

Вот, например, simplex conjecture (не помню, эквивалентна ли, но в одну сторону следствие точно есть).

Simplex conjecture. Обозначим через m(K) среднее значение объемов симплексов, лежащих внутри K. Тогда среди всех выпуклых тел единичного объема максимум m достигается на симплексе. (Минимум, кстати, достигается на шаре и это известно.)

BY Олимпиадная геометрия


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/olympgeom/1573

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe.
from hk


Telegram Олимпиадная геометрия
FROM American