Telegram Group & Telegram Channel
Physics of Language Models

Я в своей жизни ML занимался довольно мало, но в последнее время решил все-таки по-лучше разобраться. Так что иногда (частота зависит от количества лайков 👍) буду постить краткие пересказы статей/докладов, которые мне показались интересными.

Мне очень не нравится идея смотреть на LLM, как на какой-то черный ящик, который каким-то магическим образом учится, и, нужно всего лишь увеличить количество параметров в нем, обучить на большем количестве данных, и тогда он станет гораздо умнее и вдруг научится решать всякие задачи.

В докладе Physics of language models авторы тренируют относительно маленькие модели (100М параметров) на синтетических данных, и смотрят, какие задачи LLM могут решать, а какие нет.

Например, оказывается что LLM даже теоретически не могут научиться отвечать на вопрос вида "Правда ли, что Байден родился в четном году?" при том, что они прекрасно знают в каком году он родился, и знают, какие числа четные. Оказывается, что дело в порядке токенов. Если бы ответ был в формате "Байден родился в году 1942, это четное число, ответ да", то все бы работало. Но если хочется получить ответ в формате "Да, потому что он родился в ...", то в момент написания первого токена у LLM еще не будет числа 1942 "в контексте" и она не сможет выбрать правильный ответ. И такая проблема есть у любых моделей вне зависимости от размера.

По аналогичным соображениям, если в датасете было написано только "X родился в городе Y", то модель никогда не сможет научиться правильно отвечать на обратный вопрос "кто родился в городе Y?" (потому что в "памяти" модели будет мапинг X->Y, но не в обратную сторону).

Еще из прикольного в докладе показывают, что можно обучить текстовую модель делать топологическую сортировку графа. При этом можно проследить, что в "состоянии" модели во время инференса действительно будет храниться множество посещенных вершин и тех вершин, которые можно посетить на следующем шагу.



group-telegram.com/optorepost/85
Create:
Last Update:

Physics of Language Models

Я в своей жизни ML занимался довольно мало, но в последнее время решил все-таки по-лучше разобраться. Так что иногда (частота зависит от количества лайков 👍) буду постить краткие пересказы статей/докладов, которые мне показались интересными.

Мне очень не нравится идея смотреть на LLM, как на какой-то черный ящик, который каким-то магическим образом учится, и, нужно всего лишь увеличить количество параметров в нем, обучить на большем количестве данных, и тогда он станет гораздо умнее и вдруг научится решать всякие задачи.

В докладе Physics of language models авторы тренируют относительно маленькие модели (100М параметров) на синтетических данных, и смотрят, какие задачи LLM могут решать, а какие нет.

Например, оказывается что LLM даже теоретически не могут научиться отвечать на вопрос вида "Правда ли, что Байден родился в четном году?" при том, что они прекрасно знают в каком году он родился, и знают, какие числа четные. Оказывается, что дело в порядке токенов. Если бы ответ был в формате "Байден родился в году 1942, это четное число, ответ да", то все бы работало. Но если хочется получить ответ в формате "Да, потому что он родился в ...", то в момент написания первого токена у LLM еще не будет числа 1942 "в контексте" и она не сможет выбрать правильный ответ. И такая проблема есть у любых моделей вне зависимости от размера.

По аналогичным соображениям, если в датасете было написано только "X родился в городе Y", то модель никогда не сможет научиться правильно отвечать на обратный вопрос "кто родился в городе Y?" (потому что в "памяти" модели будет мапинг X->Y, но не в обратную сторону).

Еще из прикольного в докладе показывают, что можно обучить текстовую модель делать топологическую сортировку графа. При этом можно проследить, что в "состоянии" модели во время инференса действительно будет храниться множество посещенных вершин и тех вершин, которые можно посетить на следующем шагу.

BY optorepost


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/optorepost/85

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from hk


Telegram optorepost
FROM American