Notice: file_put_contents(): Write of 5505 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13697 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Запрети мне псевдолейблить | Telegram Webview: pseudolabeling/216 -
Telegram Group & Telegram Channel
Запрети мне псевдолейблить
Про что был NeurIPS Competition track в этом году? Соревнование было посвящено определению состава атмосферы экзопланет в космосе. Экзопланеты- это любые планеты, которые вращаются вокруг звезд вне солнечной системы. Теоретически, развитие методов их анализа…
🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/pseudolabeling/216
Create:
Last Update:

🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке

BY Запрети мне псевдолейблить





Share with your friend now:
group-telegram.com/pseudolabeling/216

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from hk


Telegram Запрети мне псевдолейблить
FROM American