Telegram Group & Telegram Channel
ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.



group-telegram.com/seeallochnaya/1523
Create:
Last Update:

ARC Benchmark

Многие бенчмарки (то есть наборы данных с размеченными ожидаемыми ответами, признанные прокси-оценками качества) для LLM справедливо можно критиковать за то, что они по сути тестируют запоминание. Самый простой пример — бенчмарки вопросов-ответов (или тестов с опциями ответа, но не все): чтобы ответить на вопрос «в каком году было то и то?» не нужно быть гением мысли или обладать выдающимся интеллектом. Достаточно просто запомнить факт.

По мере усложнения задач в какой-то момент мы натыкаемся на дилемму — что является запоминанием, а что рассуждением модели? Если я придумываю новую математическую задачку для средней школы, которая решается в 4-5 действий, и модель её решает — какая здесь доля запоминания, а какая интеллекта/рассуждений? Модель могла видеть много схожих задач (больше, чем дети при обучении в школе), но не конкретно эту и даже не другую такую же с идентичным принципом решения.

И после преодоления этого региона, в теории, начинаются задачи, связанные с очень банальными знаниями, но требующие именно рассуждений. Вот ARC Benchmark, по мнению его создателя Francois Chollet, такой. С ним неплохо справляются дети, на 90%+ решают взрослые, но ни одна модель или даже система ни 4 года назад, ни сегодня не показывает близких результатов.

Как выглядит бенчмарк? Это сотни задачек по типу тех, что указаны на картинке, или которые вы можете покликать тут. Цель — по нескольким примерам найти паттерн, и применить его к новой ситуации. Francois считает, что паттерны и тип задачи тут очень редки, чтобы не допустить запоминания, но в то же время человек может разобраться.

Chollet вот 5 лет назад статью написал про свои взгляды и то, почему именно так хочет тестировать модели, и про то, почему нахождение новых паттернов из очень маленького набора данных и умение их применять — это мера интеллекта.

В среднем человек решает 85% задач (когда выходная картинка для нового примера идентично авторской), а LLM-ки единицы процентов. Лучшие системы (заточенные под схожий класс задач) добиваются ~34%.

BY Сиолошная






Share with your friend now:
group-telegram.com/seeallochnaya/1523

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from hk


Telegram Сиолошная
FROM American