Telegram Group & Telegram Channel
Подборка материалов по освоению языка программирования R

Книги:
1. R in a Nutshell
неплохая книга для того чтобы начать знакомство с R, разбираются базовые концепции языка, необходимые для работы с ним (основные типы объектов, функции, ввод и вывод данных). Далее есть довольно значительный разбор применения R именно для анализа данных. Книгу рекомендую для в первую очередь пользователей R (а не разработчиков).
UPD: похоже, что книга немного устарела

2. R in action
скачать можно здесь

Кроме того, есть перевод книги на русский язык, у меня кстати есть бумажная версия, я ее почти дочитала, мне очень понравился подробный разбор статистических моделей и методов. С одной стороны он был недостаточно подробен, чтобы перейти на сухой язык формул, но достаточно доходчив, хотя и рассчитан, пожалуй, для не новичков в статистике. Примеры применения например перестановочных и бутстреп тестов в R тоже порадовали.
Бумажную версию можно купить здесь:
https://dmkpress.com/catalog/computer/statistics/978-5-94074-912-7/

3. R for Data Science
Соавтор этой книги Хадли Викхам (Hadley Wickham), разработчик среды/экосистемы tidyverse, разработчик IDE R Studio и вообще один из центральных игроков в развитии R как языка программирования. Книга эта, как следует из названия, подходит для т.н. датасаенса, то есть для всяческой работы с данными: анализ, визуализация, проверка статистических гипотез. У меня книга пока в списке для чтения.

4. Advanced R
Книга предназначена больше для программистов, для тех кто собирается погрузиться в разработку языка, здесь объясняется почему при выполнении определенных действий происходит так, а не иначе. Подробно разбирается ООП-парадигма программирования в языке R: основные классы, S3, S4, R6. Планирую разобраться с классами в R и с принципом метапрограммирования.

5. Введение в язык программирования R
https://textbook.rintro.ru/index.html
Одна из немногих книг на русском языке про R, на мой взгляд, подойдет для знакомства с языком и для дальнейшего продвижения, поскольку в ней затрагиваются довольно продвинутые вещи. Более детально смогу оценить, когда прочитаю сама)

6. Книга Ивана Позднякова "Анализ данных и статистика в R". Очень крутая, всем рекомендую! https://pozdniakov.github.io/tidy_stats/index.html

Курсы:
На степике
Очень люблю эту платформу, поэтому советовать буду на основании личного опыта прохождения курсов.
https://stepik.org/course/129 Анализ данных в R
https://stepik.org/course/724 Анализ данных в R. Часть 2.
Оба курса от Анатолия Карпова, замечательные курсы с бОльшим акцентом на анализ данных
https://stepik.org/course/497 Основы программирования на R
Не менее хороший курс, а может и более, поскольку здесь разбираются темы, более актуальные для разработки. Это неудивительно, потому что автор курса опирался в том числе на вышеупомянутую книгу Advanced R.

Кроме того, существуют курсы на курсере, но про их качество я точно сказать не смогу.

Пишите комментарии, какие курсы проходили и какие книги читали, а также советуйте свои источники, будем пополнять информацию!

#literature #R #recommendation



group-telegram.com/stats_for_science/25
Create:
Last Update:

Подборка материалов по освоению языка программирования R

Книги:
1. R in a Nutshell
неплохая книга для того чтобы начать знакомство с R, разбираются базовые концепции языка, необходимые для работы с ним (основные типы объектов, функции, ввод и вывод данных). Далее есть довольно значительный разбор применения R именно для анализа данных. Книгу рекомендую для в первую очередь пользователей R (а не разработчиков).
UPD: похоже, что книга немного устарела

2. R in action
скачать можно здесь

Кроме того, есть перевод книги на русский язык, у меня кстати есть бумажная версия, я ее почти дочитала, мне очень понравился подробный разбор статистических моделей и методов. С одной стороны он был недостаточно подробен, чтобы перейти на сухой язык формул, но достаточно доходчив, хотя и рассчитан, пожалуй, для не новичков в статистике. Примеры применения например перестановочных и бутстреп тестов в R тоже порадовали.
Бумажную версию можно купить здесь:
https://dmkpress.com/catalog/computer/statistics/978-5-94074-912-7/

3. R for Data Science
Соавтор этой книги Хадли Викхам (Hadley Wickham), разработчик среды/экосистемы tidyverse, разработчик IDE R Studio и вообще один из центральных игроков в развитии R как языка программирования. Книга эта, как следует из названия, подходит для т.н. датасаенса, то есть для всяческой работы с данными: анализ, визуализация, проверка статистических гипотез. У меня книга пока в списке для чтения.

4. Advanced R
Книга предназначена больше для программистов, для тех кто собирается погрузиться в разработку языка, здесь объясняется почему при выполнении определенных действий происходит так, а не иначе. Подробно разбирается ООП-парадигма программирования в языке R: основные классы, S3, S4, R6. Планирую разобраться с классами в R и с принципом метапрограммирования.

5. Введение в язык программирования R
https://textbook.rintro.ru/index.html
Одна из немногих книг на русском языке про R, на мой взгляд, подойдет для знакомства с языком и для дальнейшего продвижения, поскольку в ней затрагиваются довольно продвинутые вещи. Более детально смогу оценить, когда прочитаю сама)

6. Книга Ивана Позднякова "Анализ данных и статистика в R". Очень крутая, всем рекомендую! https://pozdniakov.github.io/tidy_stats/index.html

Курсы:
На степике
Очень люблю эту платформу, поэтому советовать буду на основании личного опыта прохождения курсов.
https://stepik.org/course/129 Анализ данных в R
https://stepik.org/course/724 Анализ данных в R. Часть 2.
Оба курса от Анатолия Карпова, замечательные курсы с бОльшим акцентом на анализ данных
https://stepik.org/course/497 Основы программирования на R
Не менее хороший курс, а может и более, поскольку здесь разбираются темы, более актуальные для разработки. Это неудивительно, потому что автор курса опирался в том числе на вышеупомянутую книгу Advanced R.

Кроме того, существуют курсы на курсере, но про их качество я точно сказать не смогу.

Пишите комментарии, какие курсы проходили и какие книги читали, а также советуйте свои источники, будем пополнять информацию!

#literature #R #recommendation

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/25

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. NEWS "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from hk


Telegram Статистика и R в науке и аналитике
FROM American