Telegram Group & Telegram Channel
А как бы вы доказали теорему о причесывании ежа?

мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение
S^{d-1} -> S^{d-1},
x -> G(v(x)+t*x),
где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].

Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)

Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу



group-telegram.com/sweet_homotopy/2002
Create:
Last Update:

А как бы вы доказали теорему о причесывании ежа?

мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение
S^{d-1} -> S^{d-1},
x -> G(v(x)+t*x),
где G(v) := v/|v|. Это отображение Гаусса для [нашего поля, к которому прибавлена нормаль к сфере длины t].

Они все гомотопны между собой; но при t>>0 получается отображение, близкое к тождественному, а при t<<0 — отображение, близкое к антиподальному. Они не могут быть гомотопны при нечётном d, потому что имеют разную степень. (Степень отображения можно определить гладко, через гомологии или через гомотопические группы)

Но где-то видел, что для d=3 можно обойтись без степени отображения для двумерных сфер, использовать только фундаментальную группу

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2002

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted.
from hk


Telegram сладко стянул
FROM American