Notice: file_put_contents(): Write of 1366 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 9558 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/2003 -
Telegram Group & Telegram Channel
сладко стянул
А как бы вы доказали теорему о причесывании ежа? мне приходит в голову такое рассуждение: если v=v(x) — всюду ненулевое касательное поле на единичной сфере в R^d, то надо при каждом вещественном t рассмотреть отображение S^{d-1} -> S^{d-1}, x -> G(v(x)+t*x)…
Про каждое доказательство интересно подумать, "куда оно обобщается" и "что оно использует/передоказывает". Про фундаментальную группу я спрашиваю, потому что в таких рассуждениях по-любому неявно зашит гомоморфизм надстройки в гомологиях / гомотопических группах. Но не суть.

А рассуждая буквально как в посте, получаем: если d нечётно, M — гладкая замкнутая гиперповерхность в R^d, и на M есть всюду ненулевое касательное поле, то отображение Гаусса для поля нормалей к M
G_n: M -> S^{d-1}
гомотопно своей композиции с антиподальным; следовательно, имеет степень ноль.

Но степень G_n равна* \chi(M)/2: это вроде бы видно из теории Морса, аккуратно я пока не доказал. Идея: если i-ая координата в R^d оказалась морсовской функцией на M, то надо просто посчитать степень G_n локально в регулярных значениях e_i и -e_i. Там просуммируются критические точки с коэффициентами плюс-минус один. Осталось убедиться, что с такими знаками, что получается ЭХ комплекса Морса — а значит, и ЭХ многообразия.

Вывод: если гиперповерхность можно причесать, то chi(M) = 0. А как это доказать в большей коразмерности?

*"умное" доказательство использует естественность класса Эйлера, тождество <e(TM),[M]> = chi(M) и то, что обратный образ TS^{d-1} под действием G_n равен TM.



group-telegram.com/sweet_homotopy/2003
Create:
Last Update:

Про каждое доказательство интересно подумать, "куда оно обобщается" и "что оно использует/передоказывает". Про фундаментальную группу я спрашиваю, потому что в таких рассуждениях по-любому неявно зашит гомоморфизм надстройки в гомологиях / гомотопических группах. Но не суть.

А рассуждая буквально как в посте, получаем: если d нечётно, M — гладкая замкнутая гиперповерхность в R^d, и на M есть всюду ненулевое касательное поле, то отображение Гаусса для поля нормалей к M
G_n: M -> S^{d-1}
гомотопно своей композиции с антиподальным; следовательно, имеет степень ноль.

Но степень G_n равна* \chi(M)/2: это вроде бы видно из теории Морса, аккуратно я пока не доказал. Идея: если i-ая координата в R^d оказалась морсовской функцией на M, то надо просто посчитать степень G_n локально в регулярных значениях e_i и -e_i. Там просуммируются критические точки с коэффициентами плюс-минус один. Осталось убедиться, что с такими знаками, что получается ЭХ комплекса Морса — а значит, и ЭХ многообразия.

Вывод: если гиперповерхность можно причесать, то chi(M) = 0. А как это доказать в большей коразмерности?

*"умное" доказательство использует естественность класса Эйлера, тождество <e(TM),[M]> = chi(M) и то, что обратный образ TS^{d-1} под действием G_n равен TM.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2003

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Founder Pavel Durov says tech is meant to set you free I want a secure messaging app, should I use Telegram? After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. False news often spreads via public groups, or chats, with potentially fatal effects.
from hk


Telegram сладко стянул
FROM American