group-telegram.com/abstractDL/139
Last Update:
Chinchilla: оптимальная языковая модель (by DeepMind)
Оказывается(!) бывает полезно не только масштабировать языковые модели, но и увеличивать количество обучающих данных (или хотя бы количество эпох).
Исследователи из DeepMind даже выявили примерный закон, как именно должны быть связаны размеры модели и число токенов в обучающем датасете при фиксированном количестве доступных гпу-часов для получения лучшей по перформансу модели (см. картинку). Если коротко, model_size x2 -> dataset_size x2.
Судя по всему, существующие большие модели — слишком большие (для имеющихся обучающих данных). Чтобы исправить эту несправедливость, авторы представили оптимальную модель — Chinchilla, которая в 4 раза меньше чем Gopher, но обучалась в 5 раз дольше (тот же датасет, больше эпох). Получившаяся модель, несмотря на свой размер, обходит Gopher почти на всех бенчмарках.
Статья
BY AbstractDL
Share with your friend now:
group-telegram.com/abstractDL/139