Telegram Group & Telegram Channel
Что такое Mixture of Experts (MoE)?

МоЕ — это вид моделей, который используется в куче современных LLM. Далеко ходить не надо — пять из шести моделей, о которых я рассказывал в дайджесте на прошлой неделе, были MoE. GPT-4, судя по слухам, подтверждённым Хуангом – тоже MoE.

Чем MoE отличаются от обычных (dense) моделей?

В MoE часть слоев заменяется на sparse (разреженные) MoE-слои. Они состоят из нескольких "экспертов" — по сути, отдельных небольших слоёв. Для каждого токена используется только небольшая часть экспертов. Решает, какие токены обрабатываются каким экспертами, специальная "сеть-маршрутизатор".  Это позволяет MoE быть быстрее чем dense модели, как в тренировке так и в инференсе.

Почему MoE используют?

Модели с MoE учатся в разы быстрее обычных с таким же количеством компьюта. Авторы DBRX хвастались что их конфиг MoE учится в 2 раза быстрее их же dense модели, а у авторов Qwen-MoE прирост скорости был вообще 4x.

Откуда такая разница между разными MoE в приросте эффективности тренировки?

Когда учится MoE, нужно балансировать потребление памяти, эффективность тренировки и скорость выполнения, что достигается уменьшением или увеличением общего числа экспертов, числа активных экспертов и размера экспертов. Разные команды используют разные конфигурации, отсюда и разница.

Почему MoE не используют везде?

MoE потребляет в разы больше памяти чем обычные модели, что касается и обучения и инференса. На практике большее количество памяти означает большее количество видеокарт. Для запуска Grok, например, нужно 8 видеокарт. Для GPT-4, по слухам, нужно вообще 64 видеокарты. Чтобы это имело финансовый смысл, нужен определенный уровень нагрузки, который есть не у всех. Плюс тот факт, что модель - MoE, часто ставит крест на возможности запуска на потребительских видеокартах.

Как их запускают?

Модель разбивают на несколько видеокарт (например, с помощью tensor parallelism). На каждую видеокарту кидается одинаковое количество экспертов и используют трюки чтобы убедиться что на каждого приходится одинаковая нагрузка.

Как это выглядит применимо к трансформерам?

Обычно эксперты в MoE делаются на основе слоёв MLP внутри трансформера. То есть вместо одного MLP делают несколько параллельных, но одновременно используется только часть из них. Остальные части модели (attention, эмбеддинги) — общие для всех экспертов.

>> Блогпост про MoE с большим числом деталей

#ликбез
@ai_newz



group-telegram.com/ai_newz/2550
Create:
Last Update:

Что такое Mixture of Experts (MoE)?

МоЕ — это вид моделей, который используется в куче современных LLM. Далеко ходить не надо — пять из шести моделей, о которых я рассказывал в дайджесте на прошлой неделе, были MoE. GPT-4, судя по слухам, подтверждённым Хуангом – тоже MoE.

Чем MoE отличаются от обычных (dense) моделей?

В MoE часть слоев заменяется на sparse (разреженные) MoE-слои. Они состоят из нескольких "экспертов" — по сути, отдельных небольших слоёв. Для каждого токена используется только небольшая часть экспертов. Решает, какие токены обрабатываются каким экспертами, специальная "сеть-маршрутизатор".  Это позволяет MoE быть быстрее чем dense модели, как в тренировке так и в инференсе.

Почему MoE используют?

Модели с MoE учатся в разы быстрее обычных с таким же количеством компьюта. Авторы DBRX хвастались что их конфиг MoE учится в 2 раза быстрее их же dense модели, а у авторов Qwen-MoE прирост скорости был вообще 4x.

Откуда такая разница между разными MoE в приросте эффективности тренировки?

Когда учится MoE, нужно балансировать потребление памяти, эффективность тренировки и скорость выполнения, что достигается уменьшением или увеличением общего числа экспертов, числа активных экспертов и размера экспертов. Разные команды используют разные конфигурации, отсюда и разница.

Почему MoE не используют везде?

MoE потребляет в разы больше памяти чем обычные модели, что касается и обучения и инференса. На практике большее количество памяти означает большее количество видеокарт. Для запуска Grok, например, нужно 8 видеокарт. Для GPT-4, по слухам, нужно вообще 64 видеокарты. Чтобы это имело финансовый смысл, нужен определенный уровень нагрузки, который есть не у всех. Плюс тот факт, что модель - MoE, часто ставит крест на возможности запуска на потребительских видеокартах.

Как их запускают?

Модель разбивают на несколько видеокарт (например, с помощью tensor parallelism). На каждую видеокарту кидается одинаковое количество экспертов и используют трюки чтобы убедиться что на каждого приходится одинаковая нагрузка.

Как это выглядит применимо к трансформерам?

Обычно эксперты в MoE делаются на основе слоёв MLP внутри трансформера. То есть вместо одного MLP делают несколько параллельных, но одновременно используется только часть из них. Остальные части модели (attention, эмбеддинги) — общие для всех экспертов.

>> Блогпост про MoE с большим числом деталей

#ликбез
@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2550

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from id


Telegram эйай ньюз
FROM American