Warning: file_put_contents(aCache/aDaily/post/ai_newz/-2877" target="_blank" rel="noopener" onclick="return confirm('Open this link?\n\n'+this.href);">построить нейросеть из редстоуна</a>.<br/><br/>Авторы, наверное, сами на нем выросли, и вот теперь они представили агента <b>OmniJARVIS, который способен выполнять комплексные таски, такие как крафт каменной (не деревянной) кирки</b>. Т.е. он понимает, что сначала ему нужно сделать верстак, потом деревянную кирку, и только потом, добыв булыжник, каменную.<br/><br/>Для этого используют, можно сказать, новый вид мультимодальных LLM - VLA (Vision Language Action).<br/><br/>У нас здесь есть как бы два мозга. Мозг LLM и спинной мозг – поведенческий детокенайзер, который интерпретирует аутпут LLM в действие. Действия предварительно тренируются, используя датасет из кучи видосов по Майнкрафту. LLM пишет, что делать, детокенайзер находит у себя в базе выученных действий нужное и шаг за шагом идет к своей цели. И все это вроде как работает очень дружно и слаженно.<br/><br/>В видосе агент сам поставил себе план: добыть дерево, создать верстак и скрафтить необходимые инструменты. Все эти действия он научился делать заранее, здесь они выполняются командой экшн. В записи показано, как это выглядит.<br/><br/>Еще один пример смотрите в первом комменте. <br/><br/><b>Что это значит?</b><br/>Мы уже научились обучать роботов делать какие-то простые таски: Вот свежий пост про <a href="https://t.me/ai_newz/2900-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2970 -
Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
Я не удивлён – Майнкрафт оказался отличной средой для тренировки автономных агентов. А еще там можно построить нейросеть из редстоуна.

Авторы, наверное, сами на нем выросли, и вот теперь они представили агента OmniJARVIS, который способен выполнять комплексные таски, такие как крафт каменной (не деревянной) кирки. Т.е. он понимает, что сначала ему нужно сделать верстак, потом деревянную кирку, и только потом, добыв булыжник, каменную.

Для этого используют, можно сказать, новый вид мультимодальных LLM - VLA (Vision Language Action).

У нас здесь есть как бы два мозга. Мозг LLM и спинной мозг – поведенческий детокенайзер, который интерпретирует аутпут LLM в действие. Действия предварительно тренируются, используя датасет из кучи видосов по Майнкрафту. LLM пишет, что делать, детокенайзер находит у себя в базе выученных действий нужное и шаг за шагом идет к своей цели. И все это вроде как работает очень дружно и слаженно.

В видосе агент сам поставил себе план: добыть дерево, создать верстак и скрафтить необходимые инструменты. Все эти действия он научился делать заранее, здесь они выполняются командой экшн. В записи показано, как это выглядит.

Еще один пример смотрите в первом комменте.

Что это значит?
Мы уже научились обучать роботов делать какие-то простые таски: Вот свежий пост про живую сталь и GR00T среду для виртуальной тренировки. У нас уже много примеров того, как боты складывают вещи, моют, убирают и прочее, тут и тут. В этом посте показан не первый, конечно, но очень качественный пример системы, которая объединяет все эти отдельные выученные действия в один общий план, когда бот сам анализирует обстановку, планирует и решает задачи.

Кажется, это уверенные шаги в сторону автономных агентов и происходят они в Майнкрафте (т.к., там проще тестировать и обучать). Теперь ждем более сложного планирования и для физических роботов.

Project page
Пейпер
Код!
И даже Датасет обещают скоро

@ai_newz



group-telegram.com/ai_newz/2970
Create:
Last Update:

Я не удивлён – Майнкрафт оказался отличной средой для тренировки автономных агентов. А еще там можно построить нейросеть из редстоуна.

Авторы, наверное, сами на нем выросли, и вот теперь они представили агента OmniJARVIS, который способен выполнять комплексные таски, такие как крафт каменной (не деревянной) кирки. Т.е. он понимает, что сначала ему нужно сделать верстак, потом деревянную кирку, и только потом, добыв булыжник, каменную.

Для этого используют, можно сказать, новый вид мультимодальных LLM - VLA (Vision Language Action).

У нас здесь есть как бы два мозга. Мозг LLM и спинной мозг – поведенческий детокенайзер, который интерпретирует аутпут LLM в действие. Действия предварительно тренируются, используя датасет из кучи видосов по Майнкрафту. LLM пишет, что делать, детокенайзер находит у себя в базе выученных действий нужное и шаг за шагом идет к своей цели. И все это вроде как работает очень дружно и слаженно.

В видосе агент сам поставил себе план: добыть дерево, создать верстак и скрафтить необходимые инструменты. Все эти действия он научился делать заранее, здесь они выполняются командой экшн. В записи показано, как это выглядит.

Еще один пример смотрите в первом комменте.

Что это значит?
Мы уже научились обучать роботов делать какие-то простые таски: Вот свежий пост про живую сталь и GR00T среду для виртуальной тренировки. У нас уже много примеров того, как боты складывают вещи, моют, убирают и прочее, тут и тут. В этом посте показан не первый, конечно, но очень качественный пример системы, которая объединяет все эти отдельные выученные действия в один общий план, когда бот сам анализирует обстановку, планирует и решает задачи.

Кажется, это уверенные шаги в сторону автономных агентов и происходят они в Майнкрафте (т.к., там проще тестировать и обучать). Теперь ждем более сложного планирования и для физических роботов.

Project page
Пейпер
Код!
И даже Датасет обещают скоро

@ai_newz

BY эйай ньюз


Share with your friend now:
group-telegram.com/ai_newz/2970

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge.
from id


Telegram эйай ньюз
FROM American