Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/bci_ru/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Нейроинтерфейсы | Telegram Webview: bci_ru/4233 -
Telegram Group & Telegram Channel
Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.



group-telegram.com/bci_ru/4233
Create:
Last Update:

Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.

BY Нейроинтерфейсы




Share with your friend now:
group-telegram.com/bci_ru/4233

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from id


Telegram Нейроинтерфейсы
FROM American