Telegram Group & Telegram Channel
Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует

Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях

Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги

А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.

Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.

Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?

А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.

Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.

Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.

Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.

Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.

#ai #thoughts #dateno #datasets #data



group-telegram.com/begtin/6254
Create:
Last Update:

Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует

Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях

Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги

А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.

Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.

Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?

А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.

Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.

Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.

Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.

Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.

#ai #thoughts #dateno #datasets #data

BY Ivan Begtin


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/begtin/6254

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching.
from id


Telegram Ivan Begtin
FROM American