Warning: file_put_contents(aCache/aDaily/post/cgevent/-10811-10812-10813-10814-10815-10816-10817-10818-10811-): Failed to open stream: No space left on device in /var/www/group-telegram/post.php on line 50
Метаверсище и ИИще | Telegram Webview: cgevent/10811 -
Telegram Group & Telegram Channel
Forwarded from Data Secrets
У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/cgevent/10811
Create:
Last Update:

У Google вышла крутая статья про новую архитектуру Titan, которая может победить проблему забывания в трансформерах

Традиционные трансформеры очень прожорливы. Архитектура масштабируется квадратично по мере увеличения длины последовательности. Это приводит к проблеме невозможности увеличения контекстного окна и так называемому забыванию, потому что трансформеры также часто склонны аллоцировать внимание на нерелевантный контекст и, чем он больше, тем больше такая накапливаемая ошибка и степень забывчивости модели.

В Titan же подход к памяти немного иной: помимо краткосрочной памяти attention исследователи добавили в архитектуру долгосрочную память (тут вы, возможно, поймали флешбек на LSTM, и не зря). То есть у нас есть некоторый core – стандартное внимание с ограниченным окном, и модуль, который хранит важную информацию из "далекого прошлого". Чтобы решать, какую информацию запоминать, в нем используется метрика сюрприза (чем "неожиданнее" новые данные для модели, тем важнее их запомнить) + есть коэффициент затухания. Все эффективно параллелится.

При этом в статье показали аж три варианта соединить текущее внимание с долгосрочной памятью:

Memory as Context: долгосрочная память используется как контекст для текущего внимания.
Memory as Gating: здесь прямо максимальный мэтч с LSTM, тот же механизм гейтов
Memory as Layer: самый простой вариант, вся память соединена как слой в сетке

MAC оказался лучше всего по перплексии, а MAL чуть быстрее, но теряет в эффективности. В целом такая архитектура может легким движением руки масштабироваться до контекста в 2+ миллиона токенов, сохраняя стабильную точность (трансформеры начинают обычно фейлить уже после отметки 4096). Очень крутая работа получилась у Google, в общем.

Полный текст статьи здесь

P.S. Очень подробный и понятный разбор архитектуры LSTM от нас можно почитать здесь, а вот тут лежит наша большая статья про другие архитектуры-альтернативы трансформеру

BY Метаверсище и ИИще











Share with your friend now:
group-telegram.com/cgevent/10811

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. READ MORE
from id


Telegram Метаверсище и ИИще
FROM American