Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/choking_data/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
душно про дату | Telegram Webview: choking_data/27 -
Telegram Group & Telegram Channel
I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.



group-telegram.com/choking_data/27
Create:
Last Update:

I. Регрессия для нормального респонса

Итак, пусть условное распределение Y при данном X нормально и наши наблюдения условно при данном X независимы -- первая строка на картинке. Тогда условное распределение оценок коэффициентов тоже нормальное, оценки несмещенные и состоятельные.

Что важно:
1. Мы не налагаем вообще никаких ограничений на распределение регрессоров. В том числе, мы не требуем, чтобы (Yi, Xi) были iid, мы ограничились только условной независимостью.
2. Зато условное распределение респонса должно быть нормальным и никак иначе. Наверное, мы можем сказать что это условно параметрическая модель. Условно -- потому что мы обусловливаем иксами. Параметрическая -- потому что мы предполагаем, что (условное) распределение игреков принадлежит параметрическому семейству и полностью описывается (условным) матожиданием и (условной же) остаточной дисперсией.
3. Тесты в такой модели точные (в противовес асимптотическим) -- т.е. работают и на малых выборках.
4. Статвывод проводится условно при данных регрессорах. Посчитать маргинальную дисперсию оценок не получится -- для этого нужно выинтегрировать иксы, а мы не знаем их распределения.
5. Благодаря тому, что мы обуславливаем иксами, они могут быть как случайными, так и заранее заданными / константными (designed industrial experiments, вам привет).

Четвертый пункт мозголомный, как его интерпретировать философски я пока не очень понимаю. Если вдруг кто-то в курсе -- пишите в комментариях.

Еще раз заметим, что мы здесь работаем условно (conditionally) при данных регрессорах. В этой модели OLS оценка -- это оценка методом условного максимального правдоподобия. Для метода максимального правдоподобия мы не задаем совместное распределение Y и X, мы определяем условное распределение игреков при данных иксах.

Сравните также, например, с тестом Фишера, непараметрическим бутстрепом, перестановочными тестами, регрессией Кокса или условной логистической регрессией. Техника обуславливания данными (всеми или частью) -- продуктивная штука.

BY душно про дату




Share with your friend now:
group-telegram.com/choking_data/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from id


Telegram душно про дату
FROM American